Skip to main content

Advertisement

Log in

Policosanol protects against Alzheimer’s disease-associated spatial cognitive decline in male rats: possible involved mechanisms

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by cognitive decline and synaptic failure.

Objective

The present study was designed to explore the possible protective effects of policosanol (PCO) on spatial cognitive capacity, long-term potentiation (LTP) induction, oxidant/antioxidant status, and Aβ plaques formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aβ1–40.

Methods

Healthy adult male Wistar rats were randomly divided into control, sham (ICV injection of 5 µl phosphate-buffered saline), AG (50 mg/kg; P.O., as PCO vehicle), PCO (50 mg/kg; P.O.), AD model (ICV injection of 5 µl Aβ), AD + AG (50 mg/kg; P.O.), and AD + PCO (50 mg/kg; P.O.). Treatments were performed for eight consecutive weeks. At the end of the treatment course, spatial learning and memory functions, hippocampal long-term potentiation (LTP) induction, malondialdehyde (MDA), and total thiol group (TTG) levels, as well as the formation of Aβ plaques, were examined.

Results

The results showed that injection of Aβ reduced spatial learning and memory abilities in the Barnes maze test, which was accompanied by decreases in field excitatory postsynaptic potential (fEPSP) slope, population spike (PS) amplitude, and TTG level and increases in Aβ plaque accumulation and MDA content. In contrast, PCO treatment improved all the above-mentioned changes in the Aβ-infused rats.

Conclusions

The results suggest that amelioration of hippocampal synaptic plasticity impairment, modulation of oxidant/antioxidant status, and inhibition of Aβ plaque formation by PCO may be the mechanisms behind its protective effect against AD-associated spatial cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used in our study are available from the authors on reasonable request.

References

  • Ahmadi N, Safari S, Mirazi N, Karimi SA, Komaki A (2021) Effects of vanillic acid on Aβ(1–40)-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 170:264–273

    Article  CAS  PubMed  Google Scholar 

  • Araki W, Kametani F (2022) Protection against amyloid-β oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia. Antioxidants 11:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbel-Ornath M, Hudry E, Boivin JR, Hashimoto T, Takeda S, Kuchibhotla KV, Hou S, Lattarulo CR, Belcher AM, Shakerdge N, Trujillo PB, Muzikansky A, Betensky RA, Hyman BT, Bacskai BJ (2017) Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118:167–179

    Article  PubMed  Google Scholar 

  • Assoc A (2015) Alzheimer’s Association Report 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11:332–384

    Article  Google Scholar 

  • Association As (2019) 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement 15:321–387

    Article  Google Scholar 

  • Benny A, Thomas J (2019) Essential oils as treatment strategy for Alzheimerʼs disease: current and future perspectives. Planta Med 85:239–248

    Article  CAS  PubMed  Google Scholar 

  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bourdel-Marchasson I, Delmas-Beauvieux MC, Peuchant E, Richard-Harston S, Decamps A, Reignier B, Emeriau JP, Rainfray M (2001) Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients. Age Ageing 30:235–241

    Article  CAS  PubMed  Google Scholar 

  • Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D (2021) Role of oxidative damage in alzheimer’s disease and neurodegeneration: From pathogenic mechanisms to biomarker discovery. Antioxidants 10:1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, Hudry E, Bacskai BJ (2020) Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 11:2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascella R, Cecchi C (2021) Calcium dyshomeostasis in Alzheimer’s disease pathogenesis. Int J Mol Sci 22:4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JE, Kim S, Lee J, Kim K, Kaang BK (2018) Circadian regulation by REV-ERBα mediates hippocampal E-LTP in a time-dependent manner. Exp Neurobiol 27:344–349

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  PubMed  Google Scholar 

  • Dulin MF, Hatcher LF, Sasser HC, Barringer TA (2006) Policosanol is ineffective in the treatment of hypercholesterolemia: a randomized controlled trial. Am J Clin Nutr 84:1543–1548

    Article  CAS  PubMed  Google Scholar 

  • Elseweidy MM, Zein N, Aldhamy SE, Elsawy MM, Saeid SA (2016) Policosanol as a new inhibitor candidate for vascular calcification in diabetic hyperlipidemic rats. Exp Biol Med (maywood) 241:1943–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A (2013) Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on the right track? CNS Neurosci Ther 19:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira ST, Klein WL (2011) The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaderi S, Gholipour P, Komaki A, Salehi I, Rashidi K, Esmaeil Khoshnam S, Rashno M (2022) p-Coumaric acid ameliorates cognitive and non-cognitive disturbances in a rat model of Alzheimer’s disease: the role of oxidative stress and inflammation. Int Immunopharmacol 112:109295

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi S, Komaki A, Salehi I, Basir Z, Rashno M (2022) Possible mechanisms involved in the protective effects of chrysin against lead-induced cognitive decline: an in vivo study in a rat model. Biomed Pharmacother 157:114010

    Article  PubMed  Google Scholar 

  • Gholipour P, Komaki A, Parsa H, Ramezani M (2022) Therapeutic effects of high-intensity interval training exercise alone and its combination with ecdysterone against amyloid beta-induced rat model of Alzheimer’s disease: a behavioral, biochemical, and histological study. Neurochem Res 47:2090–2108

    Article  CAS  PubMed  Google Scholar 

  • Gholipour P, Komaki A, Ramezani M, Parsa H (2022) Effects of the combination of high-intensity interval training and Ecdysterone on learning and memory abilities, antioxidant enzyme activities, and neuronal population in an Amyloid-beta-induced rat model of Alzheimer’s disease. Physiol Behav 251:113817

    Article  CAS  PubMed  Google Scholar 

  • Giordano CR, Terlecky LJ, Bollig-Fischer A, Walton PA, Terlecky SR (2014) Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci Rep 4:4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF (2007) Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience 149:582–591

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K et al (2018) Efficacy and safety of sugarcane policosanol on dyslipidemia: A meta-analysis of randomized controlled trials. Mol Nutr Food Res 62:1700280

    Article  Google Scholar 

  • Gouni-Berthold I, Berthold HK (2002) Policosanol: clinical pharmacology and therapeutic significance of a new lipid-lowering agent. Am Heart J 143:356–365

    Article  CAS  PubMed  Google Scholar 

  • Guerra YP, Cuevas VM, Ferreiro RM, Yera AO, Despaigne SJ (2015) Effects of policosanol pre-treatment on blood-brain barrier damage induced by ischemia-reperfusion in rats. Int J Pharm Sci Rev Res 32:1–6

    CAS  Google Scholar 

  • Guglielmotto M, Giliberto L, Tamagno E, Tabaton M (2010) Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front Aging Neurosci 2:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadipour M, Kaka G, Bahrami F, Meftahi GH, Pirzad Jahromi G, Mohammadi A, Sahraei H (2018) Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats. Synapse 72:e22026

    Article  PubMed  Google Scholar 

  • Hargrove JL, Greenspan P, Hartle DK (2004) Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp Biol Med (maywood) 229:215–226

    Article  CAS  PubMed  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto EM, Munhoz CD, Glezer I, Bahia VS, Caramelli P, Nitrini R, Gorjão R, Curi R, Scavone C, Marcourakis T (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Lim D-K, Suh Y-H, Chang K-A (2021) Long-term treatment of Cuban policosanol attenuates abnormal oxidative stress and inflammatory response via amyloid plaques reduction in 5xFAD mice. Antioxidants 10:1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knobloch M, Mansuy IM (2008) Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol Neurobiol 37:73–82

    Article  CAS  PubMed  Google Scholar 

  • Komaki A, Esteky H (2005) Effects of neonatal C-fiber depletion on neocortical long-term potentiation and depression. Brain Res 1054:135–142

    Article  CAS  PubMed  Google Scholar 

  • Komaki A, Shahidi S, Lashgari R, Haghparast A, Malakouti SM, Noorbakhsh SM (2007) Effects of GABAergic inhibition on neocortical long-term potentiation in the chronically prepared rat. Neurosci Lett 422:181–186

    Article  CAS  PubMed  Google Scholar 

  • Komaki H, Faraji N, Komaki A, Shahidi S, Etaee F, Raoufi S, Mirzaei F (2019) Investigation of protective effects of coenzyme Q10 on impaired synaptic plasticity in a male rat model of Alzheimer’s disease. Brain Res Bull 147:14–21

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD (2017) Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 20:1434–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, Murphy MP, Pautler RG, Klann E (2011) Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 31:5589–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Klann E (2012) Amyloid β: linking synaptic plasticity failure to memory disruption in Alzheimer’s disease. J Neurochem 120(Suppl 1):140–148

    Article  CAS  PubMed  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Marcourakis T, Camarini R, Kawamoto EM, Scorsi LR, Scavone C (2008) Peripheral biomarkers of oxidative stress in aging and Alzheimer’s disease. Dement Neuropsychol 2:2–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Marinangeli CP, Kassis AN, Jain D, Ebine N, Cunnane SC, Jones PJ (2007) Comparison of composition and absorption of sugarcane policosanols. Br J Nutr 97:381–388

    Article  CAS  PubMed  Google Scholar 

  • Menéndez R, Marrero D, Más R, Fernández I, González L, González RM (2005) In vitro and in vivo study of octacosanol metabolism. Arch Med Res 36:113–119

    Article  PubMed  Google Scholar 

  • Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:617588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina V, Arruzazabala ML, Carbajal D, Valdés S, Noa M, Más R, Fraga V, Menéndez R (1999) Effect of policosanol on cerebral ischemia in Mongolian gerbils. Braz J Med Biol Res 32:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Molina V, Ravelo Y, Noa M, Mas R, Pérez Y, Oyarzábal A, Mendoza N, Valle M, Jiménez S, Sánchez J (2013) Therapeutic effects of policosanol and atorvastatin against global brain ischaemia-reperfusion injury in gerbils. Indian J Pharm Sci 75:635–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira-Silva D, Carrettiero DC, Oliveira AS, Rodrigues S, dos Santos-Lopes J, Canas PM, Cunha RA, Almeida MC, Ferreira TL (2018) Anandamide effects in a streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats. Front Neurosci 12:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Musto D, Martorelli L, Russo M, Esposito G, Amato M, Esposito P, Riegler G (2010) Non-alcoholic hepatic steatosis: the role of policosanols in associated hyperlipidemia. Minerva Gastroenterol Dietol 56:389–395

    CAS  PubMed  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  PubMed  Google Scholar 

  • Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates sixth edition by. Acad Press 170:10.1016

  • Rahman MM, Lendel C (2021) Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol Neurodegener 16:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M, Najmi AK (2019) Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed Pharmacother 110:47–58

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar K, Samanta S, Bagoband V, Murugan NA, Govindaraju T (2020) Antioxidant berberine-derivative inhibits multifaceted amyloid toxicity. iScience 23:101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease Neurons. J Alzheimers Dis 57:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashno M, Gholipour P, Salehi I, Komaki A, Rashidi K, Khoshnam SE, Ghaderi S (2022) p-Coumaric acid mitigates passive avoidance memory and hippocampal synaptic plasticity impairments in aluminum chloride-induced Alzheimer’s disease rat model. J Funct Foods 94:105117

    Article  CAS  Google Scholar 

  • Ruangritchankul S, Chantharit P, Srisuma S, Gray LC (2021) Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: a comprehensive literature review. Ther Clin Risk Manag 17:927–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, Jacquier-Sarlin M, Buisson A (2018) Synaptotoxicity in Alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci 38:10349–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt CWP (2022) Pharmacology of NMDA (N-methyl-D-aspartate) receptor antagonists in Alzheimer’s disease. In: Pharmacological treatment of Alzheimer’s disease: Springer. p 69–79

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Luo F, Lin Q (2019) Policosanol: extraction and biological functions. J Funct Foods 57:351–360

    Article  CAS  Google Scholar 

  • Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M (2019) Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 93:2491–2513

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Li X, Ma C, He Z, Zhang X, Wang C et al (2022) Improving effect of the policosanol from Ericerus pela wax on learning and memory impairment caused by scopolamine in mice. Foods 11:2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taysi S, Polat F, Gul M, Sari RA, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 21:200–204

    Article  CAS  PubMed  Google Scholar 

  • Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Uribarri E, Laguna A, Sierra R, Ricardo Y (2002) Physico-mechanical characterization of policosanol, a novel hypocholesterolemic drug. Drug Dev Ind Pharm 28:89–93

    Article  CAS  PubMed  Google Scholar 

  • Velásquez-Jiménez D, Corella-Salazar DA, Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Salazar-López NJ, Rodrigo-Garcia J, Villegas-Ochoa MA, González-Aguilar GA (2021) Phenolic compounds that cross the blood-brain barrier exert positive health effects as central nervous system antioxidants. Food Funct 12:10356–10369

    Article  PubMed  Google Scholar 

  • Wang T, Liu YY, Wang X, Yang N, Zhu HB, Zuo PP (2010) Protective effects of octacosanol on 6-hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling. Acta Pharmacol Sin 31:765–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Yang L, Li Y, Dong Y, Yang B, Tucker LD, Zong X, Zhang Q (2020) Effects of exercise training on anxious-depressive-like behavior in Alzheimer rat. Med Sci Sports Exerc 52:1456–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Zhao Q, Yin Y (2019) miR-133b is a potential diagnostic biomarker for Alzheimer’s disease and has a neuroprotective role. Exp Ther Med 18:2711–2718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Jiang X, Ma L, Wei W, Li Z, Chang S, Wen J, Sun J, Li H (2022) Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol 10:964075

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ma C, Sun L, He Z, Feng Y, Li X, Gan J, Chen X (2021) Effect of policosanol from insect wax on amyloid β-peptide-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease. BMC Complement Med Ther 21:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, Zhang BZ, Wang YH, YangCheng HY, Zhu HL, Sun XJ, Huang FD (2010) Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci 30:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Bhattacharjee S, Jones BM, Hill JM, Clement C, Sambamurti K, Dua P, Lukiw WJ (2015) Beta-amyloid precursor protein (βAPP) processing in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Mol Neurobiol 52:533–544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results presented in this paper were a part of Samaneh Safari’s MSc thesis that was supported financially (Grant No.: 99-371) by Bu-Ali Sina University, Hamadan, Iran. The authors would like to deeply thank Mr. Shahab Ghaderi (Ph.D. student of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran) for his valuable assistance in preparing this paper. The authors would also like to greatly acknowledge Ms. Nafiseh Faraji, Mr. Ali Fathi Jouzdani, and Ms. Masoumeh Taheri for their kind support. The authors are grateful to the staff of the Neurophysiology Research Center, Hamadan University of Medical Sciences for supporting this study.

Funding

The current study was funded (Grant No.: IR.BASU.REC.1398.029) by Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naser Mirazi or Alireza Komaki.

Ethics declarations

Ethics approval

All of the experiments and animal care methods were confirmed by the Veterinary Ethics Board of the Hamadan University of Medical Science and carried out according to Guidelines of the National Institutes of Health on the principles of laboratory animal care (NIH Publication 80–23, 1996).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Mirazi, N., Ahmadi, N. et al. Policosanol protects against Alzheimer’s disease-associated spatial cognitive decline in male rats: possible involved mechanisms. Psychopharmacology 240, 755–767 (2023). https://doi.org/10.1007/s00213-023-06317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06317-7

Keywords

Navigation