Skip to main content
Log in

Behavioral economic analysis of the reinforcing effects of “bath salts” mixtures: studies with MDPV, methylone, and caffeine in male Sprague-Dawley rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

“Bath salts” preparations often contain combinations of synthetic cathinones (e.g., 3,4-methylenedioxymethcathinone [methylone], 3,4-methylenedioxypyrovalerone [MDPV]), and caffeine, and evidence suggests that mixtures of synthetic cathinones and caffeine (e.g., MDPV + caffeine or methylone + caffeine) can be more potent and/or effective reinforcers than predicted for an additive interaction.

Objective

To use demand curve analyses to compare the reinforcing effectiveness of MDPV and methylone to mixtures of MDPV + caffeine and methylone + caffeine.

Methods

Male Sprague-Dawley rats acquired methylone self-administration (0.32 mg/kg/inf) under a fixed ratio (FR) 1 schedule of reinforcement and generated full dose-response curves for methylone (0.01–1 mg/kg/inf) under an FR5 schedule of reinforcement. Demand curves were then obtained for methylone, MDPV, caffeine, and methylone + caffeine and MDPV + caffeine mixtures by increasing the FR across sessions according to the following series: 3, 10, 18, 32, 56, 100, 178, etc.

Results

Self-administration of methylone was rapidly acquired by 87.5% of rats and was maintained across a range of doses, producing an inverted U-shaped dose-response curve. Rank order demand for the individual constituents was MDPV > methylone > caffeine. Demand for the 3:1 (but not 10:1) methylone + caffeine mixture was greater than that for methylone alone, and demand for MDPV alone was similar to both MDPV + caffeine mixtures evaluated.

Conclusions

These studies provide additional evidence that although methylone is an effective reinforcer, combining methylone with caffeine results in an enhanced reinforcing effectiveness compared to methylone alone. Thus, abused “bath salts” preparations containing synthetic cathinones and caffeine may have higher abuse liability than preparations containing only synthetic cathinones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NPSs:

New psychoactive substances

α-PVP:

alpha-Pyrrolidinopentiophenone

α-PPP:

α-Pyrrolidinopropiophenone

MDPV:

3,4-Methylenedioxypyrovalerone

MDPBP:

3,4-Methylenedioxy-α-pyrrolidinobutiophenone

MDPPP:

3,4-Methylenedioxy-α-pyrrolidinopropiophenone

4-MePPP:

4-Methyl-alpha-pyrrolidinopropiophenone

4-MEC:

4-Methyl-N-ethylcathinone

DAT:

Dopamine transporter

NET:

Norepinephrine transporter

SERT:

Serotonin transporter

PR:

Progressive ratio

FR:

Fixed ratio

TO:

Timeout

SEM:

Standard error of the mean

CIs:

Confidence intervals

References

  • Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive bath salts products. Neuropsychopharmacology 38:552–562

    Article  CAS  PubMed  Google Scholar 

  • Caudevilla-Gálligo F, Ventura M, Iciar BI, Ruiz I, Fornís I (2013) Presence and composition of cathinone derivatives in drug samples taken from a drug test service in Spain (2010–2012). Human Psychopharmacol 28:341–344

    Article  CAS  Google Scholar 

  • Cauli O, Morelli M (2005) Caffeine and the dopaminergic system. Behav Pharmacol 16(2):63–77

    Article  CAS  PubMed  Google Scholar 

  • Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96

    Article  CAS  PubMed  Google Scholar 

  • Collins GT, Abbott M, Galindo K, Rush EL, Rice KC, France CP (2016) Discriminative stimulus effects of binary drug mixtures: studies with cocaine, MDPV, and caffeine. J Pharmacol Exp Ther 359(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creehan KM, Vandewater SA, Taffe MA (2015) Intravenous self-administration of mephedrone, methylone and MDMA in female rats. Neuropharmacology 92:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies S, Wood DM, Smith G, Button J, Ramsey J, Archer R, Holt DW, Dargan PI (2010) Purchasing “legal highs” on the internet--is there consistency in what you get? QJM 103:489–493

    Article  CAS  PubMed  Google Scholar 

  • Derlet RW, Tseng JC, Albertson TE (1992) Potentiation of cocaine and d-amphetamine toxicity with caffeine. Am J Emerg Med 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Dolan SB, Chen Z, Huang R, Gatch MB (2018) “Ecstasy” to addiction: mechanisms and reinforcing effects of three synthetic cathinone analogs of MDMA. Neuropharmacology 133:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC (2013) In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 38(4):563–573

    Article  CAS  PubMed  Google Scholar 

  • Ferre S (2016) Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology 233(10):1963–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferre S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortes A et al (2016) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology 104:154–160

    Article  CAS  PubMed  Google Scholar 

  • Forrester MB (2012) Synthetic cathinone exposures reported to Texas poison centers. Am J Drug Alcohol Abuse 38(6):609–615

    Article  PubMed  Google Scholar 

  • Gannon BM, Baumann MH, Walther D, Jimenez-Morigosa C, Sulima A,, Rice KC, Collins GT (2018a) The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology. https://doi.org/10.1038/s41386-018-0209-3

  • Gannon BM, Galindo KI, Mesmin MP, Rice KC, Collins GT (2018b) Reinforcing effects of binary mixtures of common bath salts constituents: studies with 3,4-methylenedioxypyrovalerone (MDPV), 3,4-methylenedioxymethcathinone (methylone), and caffeine in rats. Neuropsychopharmacology 43(4):761–769

    Article  CAS  PubMed  Google Scholar 

  • Gannon BM, Galindo KI, Mesmin MP, Sulima A, Rice KC, Collins GT (2018c) Relative reinforcing effects of second-generation synthetic cathinones: acquisition of self-administration and fixed ratio dose-response curves in rats. Neuropharmacology 134(Pt A):28–35

    Article  CAS  PubMed  Google Scholar 

  • Gannon BM, Galindo KI, Rice KC, Collins GT (2017a) Individual differences in the relative reinforcing effects of 3,4-Methylenedioxypyrovalerone under fixed and progressive ratio schedules of reinforcement in rats. J Pharmacol Exp Ther 361:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon BM, Rice KC, Collins GT (2017b) Reinforcing effects of abused “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopentiophenone (α-PVP) and their enantiomers. Behav Pharmacol 28(7):578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon BM, Sulima A, Rice KC, Collins GT (2018d) Inhibition of cocaine and 3,4-Methylenedioxypyrovalerone (MDPV) self-administration by Lorcaserin is mediated by 5-HT2C receptors in rats. J Pharmacol Exp Ther 364(2):359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gannon BM, Williamson A, Suzuki M, Rice KC, Fantegrossi WE (2016) Stereoselective effects of abused “Bath salt” constituent 3,4-Methylenedioxypyrovalerone in mice: drug discrimination, locomotor activity, and thermoregulation. J Pharmacol Exp Ther 356(2):615–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett BE, Griffiths RR (2001) Intravenous nicotine and caffeine: subjective and physiological effects in cocaine abusers. J Pharmacol Exp Ther 296:486–494

    CAS  PubMed  Google Scholar 

  • Gatch MB, Taylor CM, Forster MJ (2013) Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol 24(5–6):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorska AM, Golembiowska K (2015) The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum. Neurotox Res 27(3):229–245

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RR, Bradford LD, Brady JV (1979) Progressive ratio and fixed ratio schedules of cocaine-maintained responding in baboons. Psychopharmacology 65:125–136

    Article  CAS  PubMed  Google Scholar 

  • Harland RD, Gauvin DV, Michaelis RC, Carney JM, Seale TW, Holloway FA (1989) Behavioral interaction between cocaine and caffeine: a drug discrimination analysis in rats. Pharmacol Biochem Behav 32:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Hursh SR, Silberberg A (2008) Economic demand and essential value. Psychol Rev 115:186–198

    Article  PubMed  Google Scholar 

  • Hursh SR, Winger G (1995) Normalized demand for drugs and other reinforcers. J Exp Anal Behav 64(3):373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huskinson SL, Naylor JE, Townsend EA, Rowlett JK, Blough BE, Freeman KB (2017) Self-administration and behavioral economics of second-generation synthetic cathinones in male rats. Psychopharmacology 234(4):589–598

    Article  CAS  PubMed  Google Scholar 

  • Javadi-Paydar M, Harvey EL, Grant Y, Vandewater SA, Creehan KM, Nguyen JD, Dickerson TJ, Taffe MA (2018) Binge-like acquisition of α-pyrrolidinopentiophenone (α-PVP) self-administration in female rats. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-018-4943-3

  • Johnson PS, Johnson MW (2014) Investigation of “bath salts” use patterns within an online sample of users in the United States. J Psychoactive Drugs 46:369–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Koffarnus MN, Hall A, Winger G (2012) Individual differences in rhesus monkeys’ demand for drugs of abuse. Addict Biol 17(5):887–896

    Article  CAS  PubMed  Google Scholar 

  • Lapachinske SF, Okai GG, dos Santos A, de Bairros AV, Yonamine M (2015) Analysis of cocaine and its adulterants in drugs for international trafficking seized by the Brazilian Federal Police. Forensic Sci Int 247:28–53

    Article  CAS  Google Scholar 

  • Lile JA, Wang Z, Woolverton WL, France JE, Gregg TC, Davies HM, Nader MA (2003) The reinforcing efficacy of psychostimulants in rhesus monkeys: the role of pharmacokinetics and pharmacodynamics. J Pharmacol Exp Ther 307:356–366

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2011) Guide for the care and use of laboratory animals, 8th edn. National Academy Press, Washington, DC

    Google Scholar 

  • Nguyen JD, Grant Y, Creehan KM, Vandewater SA, Taffe MA (2017) Escalation of intravenous self-administration of methylone and mephedrone under extended access conditions. Addict Biol 22(5):1160–1168

    Article  CAS  PubMed  Google Scholar 

  • Panlilio LV, Schindler CW (2000) Self-administration of remifentanil, an ultra-short acting opioid, under continuous and progressive-ratio schedules of reinforcement in rats. Psychopharmacology 150:61–66

    Article  CAS  PubMed  Google Scholar 

  • Roberts DC, Phelan R, Hodges LM, Hodges MM, Bennett B, Childers S, Davies H (1999) Self-administration of cocaine analogs by rats. Psychopharmacology 144(4):389–397

    Article  CAS  PubMed  Google Scholar 

  • Ross EA, Watson M, Goldberger B (2011) “Bath salts” intoxication. N Engl J Med 365:967–968

    Article  CAS  PubMed  Google Scholar 

  • Schindler CW, Thorndike EB, Goldberg SR, Lehner KR, Cozzi NV, Brandt SD, Baumann MH (2016) Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology 233(10):1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Schneir A, Ly BT, Casagrande K, Darracq M, Offerman SR, Thornton S, Smollin C, Vohra R, Rangun C, Tomaszewski C, Gerona RR (2014) Comprehensive analysis of “bath salts” purchased from California stores and the Internet. Clin Toxicol (Phila) 52(7):651–658

    Article  CAS  Google Scholar 

  • Scott CC, Chen KK (1944) Comparison of the action of l-ethyl theobromine and caffeine in animals and man. J Pharmacol Exp Ther 82:89–97

    CAS  Google Scholar 

  • Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH (2013) Forensic investigation of K2, spice, and “bath salt” commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int 233:416–422

    Article  CAS  PubMed  Google Scholar 

  • Shanks KG, Dahn T, Behonick G, Terrell A (2012) Analysis of first and second generation legal highs for synthetic cannabinoids and synthetic stimulants by ultra-performance liquid chromatography and time of flight mass spectrometry. J Anal Toxicol 36:360–371

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu L-H, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed  Google Scholar 

  • Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of bath salts and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49:499–505

    Article  CAS  Google Scholar 

  • United Nations Office on Drugs and Crime (2017) World Drug Report 2017. United Nations publication. Sales no. E.17.XI.6

  • Vandewater SA, Creehan KM, Taffe MA (2015) Intravenous self-administration of entactogen-class stimulants in male rats. Neuropharmacology 99:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal Giné C, Ventura Vilamala M, Fornís Espinosa I, Gil Lladanosa C, Calzada Álvarez N, Fitó Fruitós A, Rodríguez Rodríguez J, Domíngo Salvany A, de la Torre Fornell R (2016) Crystals and tablets in the Spanish ecstasy market 2000-2014: are they the same or different in terms of purity and adulteration? Forensic Sci Int 263:164–168

    Article  CAS  PubMed  Google Scholar 

  • Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S, Johnson CT et al (2013) The reinforcing and rewarding effects of methylone, a synthetic cathinone commonly found in “bath salts”. J Addict Res Ther Suppl 9:002

    Google Scholar 

  • Watterson LR, Kufahl PR, Nemirovsky NE, Sewalia K, Grabenauer M, Thomas BF, Marusich JA, Wegner S, Olive MF (2014) Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol 19(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313:848–854

    Article  CAS  PubMed  Google Scholar 

  • Wee S, Carroll FI, Woolverton WL (2006) A reduced rate of in vivo dopamine transporter binding is associated with lower relative reinforcing efficacy of stimulants. Neuropsychopharmacology 31:351–362

    Article  CAS  PubMed  Google Scholar 

  • Winger G, Galuska CM, Hursh SR, Woods JH (2006) Relative reinforcing effects of cocaine, remifentanil, and their combination in rhesus monkeys. J Pharmacol Exp Ther 318(1):223–229

    Article  CAS  PubMed  Google Scholar 

  • Zuba D, Byrska B (2013) Prevalence and co-existence of active components of “legal highs”. Drug Test Anal 5:420–429

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Institutes of Health grants R01DA039146 (GTC) and T32DA031115 (BMG) and by the Intramural Research Programs of the National Institute on Drug Abuse/National Institute on Alcohol Abuse and Alcoholism (KCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory T. Collins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article belongs to a Special Issue on Bath Salts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gannon, B.M., Mesmin, M.P., Sulima, A. et al. Behavioral economic analysis of the reinforcing effects of “bath salts” mixtures: studies with MDPV, methylone, and caffeine in male Sprague-Dawley rats. Psychopharmacology 236, 1031–1041 (2019). https://doi.org/10.1007/s00213-018-5046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5046-x

Keywords

Navigation