Skip to main content

Advertisement

Log in

Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

A Correction to this article was published on 10 August 2018

This article has been updated

Abstract

Rationale

Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered.

Objectives

We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[−]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[−] administration reduces phasic dopamine release in the NAc.

Methods

Rats were injected with a Phe/Tyr[−] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[−] mixture or the control amino acid solution.

Results

Phe/Tyr[−] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[−] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats.

Conclusions

These results indicate that depletion of tyrosine via Phe/Tyr[−] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 10 August 2018

    After publication of this paper, the authors determined an error in the calculation of the norepinephrine standard concentrations for the HPLC calibration curves.

References

  • Alabi AA, Tsien RW (2012) Synaptic vesicle pools and dynamics. Cold Spring Harb Perspect Biol 4:a013680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrett SP, Pihl RO, Benkelfat C, Brunelle C, Young SN, Leyton M (2008) The role of dopamine in alcohol self-administration in humans: individual differences. Eur Neuropsychopharmacol 18:439–447

    Article  PubMed  CAS  Google Scholar 

  • Bongiovanni R, Newbould E, Jaskiw GE (2008) Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels. Brain Res 1190:39–48

    Article  PubMed  CAS  Google Scholar 

  • Borland LM, Shi G, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146:149–158

    Article  PubMed  CAS  Google Scholar 

  • Brodnik Z, Double M, Jaskiw GE (2013) Presynaptic regulation of extracellular dopamine levels in the medial prefrontal cortex and striatum during tyrosine depletion. Psychopharmacology 227:363–371

    Article  PubMed  CAS  Google Scholar 

  • Cawley EI, Park S, aan het Rot M, Sancton K, Benkelfat C, Young SN, Boivin DB, Leyton M (2013) Dopamine and light: dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. J Psychiatry Neurosci 38:388–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028

    Article  PubMed  CAS  Google Scholar 

  • Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30:14273–14283

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Fernstrom JD (1995) Acute tyrosine depletion reduces tyrosine hydroxylation rate in rat central nervous system. Life Sci 57:PL97–PL102

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, Walker QD, Wightman RM (1997) Dopamine release and uptake rates both decrease in the partially denervated striatum in proportion to the loss of dopamine terminals. Brain Res 753:225–234

    Article  PubMed  CAS  Google Scholar 

  • Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 154:105–111

    Article  PubMed  CAS  Google Scholar 

  • Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM (2008) Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem 80:4040–4048

    Article  PubMed  CAS  Google Scholar 

  • Howard CD, Daberkow DP, Ramsson ES, Keefe KA, Garris PA (2013) Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. Eur J Neurosci 38:2078–2088

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard CD, Keefe KA, Garris PA, Daberkow DP (2011) Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. J Neurochem 118:668–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaskiw GE, Bongiovanni R (2004) Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat. Psychopharmacology 172:100–107

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Kirkbride B, Bongiovanni R (2006) In rats chronically treated with clozapine, tyrosine depletion attenuates the clozapine-induced in vivo increase in prefrontal cortex dopamine and norepinephrine levels. Psychopharmacology 185:416–422

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Kirkbride B, Newbould E, Young D, Durkalski V, Bongiovanni R (2005) Clozapine-induced dopamine release in the medial prefrontal cortex is augmented by a moderate concentration of locally administered tyrosine but attenuated by high tyrosine concentrations or by tyrosine depletion. Psychopharmacology 179:713–724

    Article  PubMed  CAS  Google Scholar 

  • Kelm MK, Boettiger CA (2013) Effects of acute dopamine precursor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype. J Cogn Neurosci 25:2061–2071

    Article  PubMed  Google Scholar 

  • Kelm MK, Boettiger CA (2015) Age moderates the effect of acute dopamine depletion on passive avoidance learning. Pharmacol Biochem Behav 131:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Saez I, Phillips PE, Montague PR (2011) Sub-second dopamine detection in human striatum. PLoS One 6:e23291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Masurier M, Oldenzeil W, Lehman C, Cowen P, Sharp T (2006) Effect of acute tyrosine depletion in using a branched chain amino-acid mixture on dopamine neurotransmission in the rat brain. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 31:310–317

    Article  CAS  Google Scholar 

  • Le Masurier M, Zetterstrom T, Cowen P, Sharp T (2013) Tyrosine-free amino acid mixtures reduce physiologically-evoked release of dopamine in a selective and activity-dependent manner. J Psychopharmacol 28:561–569

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 29:427–432

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Young SN, Blier P, Baker GB, Pihl RO, Benkelfat C (2000a) Acute tyrosine depletion and alcohol ingestion in healthy women. Alcohol Clin Exp Res 24:459–464

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Young SN, Pihl RO, Etezadi S, Lauze C, Blier P, Baker GB, Benkelfat C (2000b) Effects on mood of acute phenylalanine/tyrosine depletion in healthy women. Neuropsychopharmacology 22:52–63

    Article  PubMed  CAS  Google Scholar 

  • McMillen BA, German DC, Shore PA (1980) Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem Pharmacol 29:3045–3050

    Article  PubMed  CAS  Google Scholar 

  • McTavish SF, Callado L, Cowen PJ, Sharp T (1999a) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384

    Article  PubMed  CAS  Google Scholar 

  • McTavish SF, Cowen PJ, Sharp T (1999b) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 141:182–188

    Article  PubMed  CAS  Google Scholar 

  • McTavish SF, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360

    Article  PubMed  CAS  Google Scholar 

  • Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A–592A

    Article  PubMed  CAS  Google Scholar 

  • Moja EA, Lucini V, Benedetti F, Lucca A (1996) Decrease in plasma phenylalanine and tyrosine after phenylalanine-tyrosine free amino acid solutions in man. Life Sci 58:2389–2395

    Article  PubMed  CAS  Google Scholar 

  • Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J Psychiatry 160:1887–1889

    Article  PubMed  Google Scholar 

  • Park J, Takmakov P, Wightman RM (2011) In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J Neurochem 119:932–944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477–10486

  • Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM (2009) Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 33:1187–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763–1773

    Article  PubMed  CAS  Google Scholar 

  • Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894–903

    Article  PubMed  CAS  Google Scholar 

  • Robinson DL, Zitzman DL, Smith KJ, Spear LP (2011) Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience 176:296–307

    Article  PubMed  CAS  Google Scholar 

  • Sanghera MK, German DC, Kiser RS, Shore PA (1979) Differences in norepinephrine and dopamine neurotransmitter storage systems. Brain Res Bull 4:217–221

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci

  • Sheehan BD, Tharyan P, McTavish SF, Campling GM, Cowen PJ (1996) Use of a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy subjects. J Psychopharmacol 10:231–234

    Article  PubMed  CAS  Google Scholar 

  • Shnitko TA, Robinson DL (2014) Anatomical and pharmacological characterization of catecholamine transients in the medial prefrontal cortex evoked by ventral tegmental area stimulation. Synapse 68:131–143

    Article  PubMed  CAS  Google Scholar 

  • Shnitko TA, Robinson DL (2015) Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem Neurosci 6:147–154

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Sharp T (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J Chromatogr 652:228–233

    Article  PubMed  CAS  Google Scholar 

  • Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

  • Venugopalan VV, Casey KF, O’Hara C, O’Loughlin J, Benkelfat C, Fellows LK, Leyton M (2011) Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 36:2469–2476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  • Willuhn I, Wanat MJ, Clark JJ, Phillips PE (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Paul Kropp for consultation on protocols for the amino acid mixtures, Dr. Chris Wiesen (UNC Odum Institute for Research in Social Science) for statistical consultation, and Drs. Margaret Broadwater and Aric Madayag for technical assistance and critical comments on the manuscript.

Author contribution

DLR and CAB conceptualized the experiments. TAS, SCT, DLR, and WL collected and analyzed the voltammetric data. SJS, SZ, RUC, JMD, and RAG set up HPLC procedures and collected and analyzed the tissue content data. DLR, TAS, SJS, SZ, CAB, and RAG interpreted the data and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donita L. Robinson.

Ethics declarations

Funding

This research was funded by the NIH (P60 AA011605, Project no. 3), the UNC Bowles Center for Alcohol Studies, R37 AA011852 and R01 AA014874. SCT was supported on a Summer Undergraduate Research Fellowship from UNC Chapel Hill. SJS was supported on 5P60AA011605-17S1 and JMD was supported on T32 AA007471.

Conflict of interest

The authors declare that they have no competing conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shnitko, T.A., Taylor, S.C., Stringfield, S.J. et al. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology 233, 2045–2054 (2016). https://doi.org/10.1007/s00213-016-4259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4259-0

Keywords

Navigation