Skip to main content

Advertisement

Log in

Differential effects of the d- and l- isomers of amphetamine on pharmacological MRI BOLD contrast in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The d- and l-amphetamine sulphate isomers are used in the formulation of Adderall XR®, which is effective in the treatment of attention-deficit hyperactivity disorder (ADHD). The effects of these isomers on brain activity has not been examined using neuroimaging.

Objectives

This study determines the pharmacological magnetic resonance imaging blood-oxygenation-level-dependent (BOLD) response in rat brain regions after administration of each isomer.

Materials and methods

Rats were individually placed into a 2.35 T Bruker magnet for 60 min to achieve basal recording of variation in signal intensity. Either saline (n = 9), d-amphetamine sulphate (2 mg/kg, i.p.; n = 9) or l-amphetamine sulphate (4 mg/kg, i.p.; n = 9) were administered, and recording continued for a further 90 min. Data were analysed for BOLD effects using statistical parametric maps. Blood pressure, blood gases and respiratory rate were monitored during scanning.

Results

The isomers show overlapping effects on the BOLD responses in areas including nucleus accumbens, medial entorhinal cortex, colliculi, field CA1 of hippocampus and thalamic nuclei. The l-isomer produced greater global changes in the positive BOLD response than the d-isomer, including the somatosensory and motor cortices and frontal brain regions such as the orbitofrontal cortices, prelimbic and infralimbic cortex which were not observed with the d-isomer.

Conclusions

The amphetamine isomers produce different BOLD responses in brain areas related to cognition, pleasure, pain processing and motor control probably because of variations on brain amine systems such as dopamine and noradrenaline. The isomers may, therefore, have distinct actions on brain regions affected in ADHD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Wong EC (1997) A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. Biomed 10(4–5):197–203

    CAS  Google Scholar 

  • Bartus RT, Levere TE (1977) Frontal decortication in rhesus monkeys: a test of the interference hypothesis. Brain Res 119:233–248

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Damasio H, Tranel D, Anderson SW (1998) Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 18:428–437

    PubMed  CAS  Google Scholar 

  • Bechara A, Damasio H, Damasio AR, Lee GP (1999) Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 19:5473–5481

    PubMed  CAS  Google Scholar 

  • Berridge KC (2003) Pleasures of the brain. Brain Cogn 52(1):106–128

    Article  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    PubMed  CAS  Google Scholar 

  • Blair RJ (2004) The roles of orbital frontal cortex in the modulation of antisocial behaviour. Brain Cogn 55(1):198–208

    Article  PubMed  CAS  Google Scholar 

  • Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, Kurian V, Ernst M, London ED (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26:376–386

    Article  PubMed  CAS  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB, Vauss YC, Vaituzis AC, Dickstein DP, Sarfatti SE, Rapoport JL (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psych 36:374–383

    Article  CAS  Google Scholar 

  • Cash D, Lowe AS, Roberts TJ, Ireland MD, Williams SCR (2002) In vivo mapping of mouse brain response to d-amphetamine using bold contrast FMRI. J Psychopharmacol (Berl) 16:A65

    Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Franklin KB (1992) Infusions of 6-hydroxydopamine into the nucleus accumbens abolish the analgesic effect of amphetamine but not of morphine in the formalin test. Brain Res 580:106–110

    Article  PubMed  CAS  Google Scholar 

  • Concannon JT, Schechter MD (1982) Failure of amphetamine isomers to decrease hyperactivity in developing rats. Pharmacol Biochem Behav 17:5–9

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Dalley JW, Thomas KL, Howes SR, Tsai TH, Aparicio-Legarza MI, Reynolds GP, Everitt BJ, Robbins TW (1999) Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur J Neurosci 11:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839

    Article  PubMed  CAS  Google Scholar 

  • De Bruin JP, Feenstra MG, Broersen LM, Van Leeuwen M, Arens C, De Vries S, Joosten RN (2000) Role of the prefrontal cortex of the rat in learning and decision making: effects of transient inactivation. Prog Brain Res 126:103–113

    Article  PubMed  Google Scholar 

  • Devous MD Sr, Trivedi MH, Rush AJ (2001) Regional cerebral blood flow response to oral amphetamine challenge in healthy volunteers. J Nucl Med 42:535–542

    PubMed  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72

    Article  PubMed  CAS  Google Scholar 

  • Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AM (2005) Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology 48:236–245

    Article  PubMed  CAS  Google Scholar 

  • Easton N, Shah YB, Marshall FH, Fone KC, Marsden CA (2006) Guanfacine produces differential effects in frontal cortex compared to striatum: assessed by phMRI BOLD contrast. Psychopharmacology (Berl) 189:369–385

    CAS  Google Scholar 

  • Easton N, Marshall F, Fone K, Marsden C (2007a) Atomoxetine produces changes in cortico-basal thalamic loop circuits: assessed by phMRI BOLD contrast. Neuropharmacology 52:812–826

    Article  PubMed  CAS  Google Scholar 

  • Easton N, Steward CA, Marshall FH, Fone KC, Marsden CA (2007b) Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in-vitro in the rat brain. Neuropharmacology 52:405–414

    Article  PubMed  CAS  Google Scholar 

  • Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF (2005) The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30:936–943

    Article  PubMed  CAS  Google Scholar 

  • Ferris RM, Tang FL, Maxwell RA (1972) A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 181:407–416

    PubMed  CAS  Google Scholar 

  • Flecknell PA, Waynsworth HB (1992) Experimental and surgical techniques in rats. Academic, San Diego

    Google Scholar 

  • Friston KJ, Ashburner J, Poline JB, Frith CD, Heather JD, Frackowiak RSJ (1995a) Spatial registration and normalization of images. Hum Brain Map 2:165–189

    Article  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995b) [SPM_3] Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189–210

    Article  Google Scholar 

  • Giorgi O, Piras G, Lecca D, Corda MG (2005) Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines. Neuroscience 135:987–998

    Article  PubMed  CAS  Google Scholar 

  • Godefroy O, Rousseaux M (1996) Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn 30:155–174

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Wurtz RH (1972) Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. J Neurophysiol 35:560–574

    PubMed  CAS  Google Scholar 

  • Graziano MS, Taylor CS, Moore T, Cooke DF (2002) The cortical control of movement revisited. Neuron 36:349–362

    Article  PubMed  CAS  Google Scholar 

  • Harris JE, Baldessarini RJ (1973) Uptake of (3H)-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. Neuropharmacology 12:669–679

    Article  PubMed  CAS  Google Scholar 

  • Hedou G, Homberg J, Martin S, Wirth K, Feldon J, Heidbreder CA (2000) Effect of amphetamine on extracellular acetylcholine and monoamine levels in subterritories of the rat medial prefrontal cortex. Eur J Pharmacol 390:127–136

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Orlansky H, Mytilineou C, Cohen G (1975) Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194:47–56

    PubMed  CAS  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  CAS  Google Scholar 

  • Hertel P, Mathe JM, Nomikos GG, Iurlo M, Mathe AA, Svensson TH (1995) Effects of d-amphetamine and phencyclidine on behavior and extracellular concentrations of neurotensin and dopamine in the ventral striatum and the medial prefrontal cortex of the rat. Behav Brain Res 72:103–114

    Article  PubMed  CAS  Google Scholar 

  • Holmes JC, Rutledge CO (1976) Effects of the d- and l-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem Pharmacol 25:447–451

    Article  PubMed  CAS  Google Scholar 

  • Ignashchenkova A, Dicke PW, Haarmeier T, Thier P (2004) Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 7:56–64

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Frost AS, Moghaddam B (2001) Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem 78:920–923

    Article  PubMed  CAS  Google Scholar 

  • Jane JA, Masterton RB, Diamond IT (1965) The function of the tectum for attention to auditory stimuli in the cat. J Comp Neurol 125:165–191

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Weinberger DR, Crawley JN (1991a) Microinjection of apomorphine into the prefrontal cortex of the rat reduces dopamine metabolite concentrations in microdialysate from the caudate nucleus. Biol Psychiatry 29:703–706

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Tizabi Y, Lipska BK, Kolachana BS, Wyatt RJ, Gilad GM (1991b) Evidence for a frontocortical-septal glutamatergic pathway and compensatory changes in septal glutamate uptake after cortical and fornix lesions in the rat. Brain Res 550:7–10

    Article  PubMed  CAS  Google Scholar 

  • Jodo E, Suzuki Y, Kayama Y (2000) Selective responsiveness of medial prefrontal cortex neurons to the meaningful stimulus with a low probability of occurrence in rats. Brain Res 856:68–74

    Article  PubMed  CAS  Google Scholar 

  • Jones N, O’Neill MJ, Tricklebank M, Libri V, Williams SCR (2005) Examining the neural targets of the AMPA receptor potentiator LY404187 in the rat brain using pharmacological magnetic resonance imaging. Psychopharmacology (Berl) 180:743–751

    Article  CAS  Google Scholar 

  • Kalisch R, Elbel GK, Gossl C, Czisch M, Auer DP (2001) Blood pressure changes induced by arterial blood withdrawal influence bold signal in anesthesized rats at 7 Tesla: implications for pharmacologic mri. Neuroimage 14:891–898

    Article  PubMed  CAS  Google Scholar 

  • Kalisch R, Delfino M, Murer MG, Auer DP (2005) The phenylephrine blood pressure clamp in pharmacologic magnetic resonance imaging: reduction of systemic confounds and improved detectability of drug-induced BOLD signal changes. Psychopharmacology (Berl) 180:774–780

    Article  CAS  Google Scholar 

  • Kankaanpaa A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Karreman M, Moghaddam B (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem 66:589–598

    Article  PubMed  CAS  Google Scholar 

  • Kastrup A, Kruger G, Glover GH, Moseley ME (1999a) Assessment of cerebral oxidative metabolism with breath holding and fMRI. Magn Reson Med 42:608–611

    Article  PubMed  CAS  Google Scholar 

  • Kastrup A, Kruger G, Glover GH, Neumann-Haefelin T, Moseley ME (1999b) Regional variability of cerebral blood oxygenation response to hypercapnia. Neuroimage 10:675–681

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP (1989) Retrospective and prospective coding of information: role of the medial prefrontal cortex. Exp Brain Res 74:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kluver H, Bucy PC (1997) Preliminary analysis of functions of the temporal lobes in monkeys. J Neuropsychiatry Clin Neurosci 9:606–620

    PubMed  CAS  Google Scholar 

  • Kohler C, Sundberg H (1977) Locomotor activity and exploratory behavior after medial entorhinal cortex lesions in the albino rat. Behav Biol 20:419–432

    Article  PubMed  CAS  Google Scholar 

  • Kolachana BS, Saunders RC, Weinberger DR (1995) Augmentation of prefrontal cortical monoaminergic activity inhibits dopamine release in the caudate nucleus: an in vivo neurochemical assessment in the rhesus monkey. Neuroscience 69:859–868

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    PubMed  CAS  Google Scholar 

  • Lee JS, Kim BN, Kang E, Lee DS, Kim YK, Chung JK, Lee MC, Cho SC (2005) Regional cerebral blood flow in children with attention deficit hyperactivity disorder: comparison before and after methylphenidate treatment. Hum Brain Map 24:157–164

    Article  Google Scholar 

  • Liu ZHM, Schmidt KF, Sicard KM, Duong TQ (2004) Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med 52:277–285

    Article  PubMed  Google Scholar 

  • Malmo RB (1942) Interference factors in delayed response in monkeys after removal of frontal lobes. J Neurophysiol 5:295–308

    Google Scholar 

  • Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125:624–639

    Article  PubMed  Google Scholar 

  • Mediavilla A, Feria M, Fernandez JF, Cagigas P, Pazos A, Florez J (1979) The stimulatory action of d-amphetamine on the respiratory centre, and its mediation by a central alpha-adrenergic mechanism. Neuropharmacology 18:133–142

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S, Leipzig JN, Lieberman JA, Duncan GE (2000) Effects of ketamine, MK-801, and amphetamine on regional brain 2-deoxyglucose uptake in freely moving mice. Neuropsychopharmacology 22:400–412

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1996) The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 6:470–481

    Article  PubMed  CAS  Google Scholar 

  • Mulder AB, Nordquist R, Orgut O, Pennartz CM (2000) Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning. Prog Brain Res 126:287–301

    Article  PubMed  CAS  Google Scholar 

  • Muller JR, Philiastides MG, Newsome WT (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc Natl Acad Sci USA 102:524–529

    Article  PubMed  CAS  Google Scholar 

  • Murase S, Grenhoff J, Chouvet G, Gonon FG, Svensson TH (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett 157:53–56

    Article  PubMed  CAS  Google Scholar 

  • Olds ME, Olds J (1963) Pharmacological patterns in subcortical reinforcement behavior. Int J Neuropharmacol 64:309–325

    Article  Google Scholar 

  • Parkinson JA, Olmstead MC, Burns LH, Robbins TW, Everitt BJ (1999) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J Neurosci 19:2401–2411

    PubMed  CAS  Google Scholar 

  • Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    Article  PubMed  CAS  Google Scholar 

  • Posse S, Kemna LJ, Elghahwagi B, Wiese S, Kiselev VG (2001) Effect of graded hypo- and hypercapnia on fMRI contrast in visual cortex quatification of T (*) (2) changes by multiecho EPI. Magn Reson Med 46:264–271

    Article  PubMed  CAS  Google Scholar 

  • Rees H, Roberts MH (1987) Anterior pretectal stimulation alters the responses of spinal dorsal horn neurones to cutaneous stimulation in the rat. J Physiol 385:415–436

    PubMed  CAS  Google Scholar 

  • Rogeness GA, Javors MA, Pliszka SR (1992) Neurochemistry and child and adolescent psychiatry. J Am Acad Child Adolesc Psych 31:765–781

    Article  CAS  Google Scholar 

  • Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, Robbins TW (1999) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 19:9029–9038

    PubMed  CAS  Google Scholar 

  • Rose SE, Janke AL, Strudwick MW, McMahon KL, Chalk JB, Snyder P, De zubicaray GI (2006) Assessment of dynamic susceptibility contrast cerebral blood flow response to amphetamine challenge: a human pharmacological magnetic resonance imaging study at 1.5 and 4 T. Magn Reson Med 55(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Rostrup E, Law I, Blinkenberg M, Larsson HB, Born AP, Holm S, Paulson OB (2000) Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study. Neuroimage 11:87–97

    Article  PubMed  CAS  Google Scholar 

  • Sachs C, Jonsson G, Fuxe K (1973) Mapping of central noradrenaline pathways with 6-hydroxy-DOPA. Brain Res 63:249–261

    Article  PubMed  CAS  Google Scholar 

  • Sanes JN (2003) Neocortical mechanisms in motor learning. Curr Opin Neurobiol 13:225–231

    Article  PubMed  CAS  Google Scholar 

  • Saunders RC, Kolachana BS, Weinberger DR (1994) Local pharmacological manipulation of extracellular dopamine levels in the dorsolateral prefrontal cortex and caudate nucleus in the rhesus monkey: an in vivo microdialysis study. Exp Brain Res 98:44–52

    Article  PubMed  CAS  Google Scholar 

  • Schenk F, Inglin F, Gyger M (1983) Activity and exploratory behavior after lesions of the medial entorhinal cortex in the woodmouse (Apodemus sylvaticus). Behav Neural Biol 37:89–107

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KF, Febo M, Shen Q, Luo F, Sicard KM, Ferris CF, Stein EA, Duong TQ (2006) Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI. Psychopharmacology (Berl) 185:479–486

    Article  CAS  Google Scholar 

  • Scott SH (2000) Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can J Physiol Pharm 78:923–933

    Article  CAS  Google Scholar 

  • Segal DS (1975) Behavioral characterization of d- and l-amphetamine: neurochemical implications. Science 190:475–477

    Article  PubMed  CAS  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 20(401):322–330

    Article  Google Scholar 

  • Shimm DS, Logue GL, Maltbie AA, Dugan S (1979) Medical management of chronic cancer pain. JAMA 241:2408–2412

    Article  PubMed  CAS  Google Scholar 

  • Sicard KM, Duong TQ (2005) Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 25:850–858

    Article  PubMed  Google Scholar 

  • Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23:472–481

    Article  PubMed  CAS  Google Scholar 

  • Siggaard-Andersen O (1971) An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 27:239–245

    Article  PubMed  CAS  Google Scholar 

  • Skoubis PD, Hradil V, Chin CL, Luo Y, Fox GB, McGaraughty S (2006) Mapping brain activity following administration of a nicotinic acetylcholine receptor agonist, ABT-594, using functional magnetic resonance imaging in awake rats. Neuroscience 137:583–591

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L (1981) The deoxyglucose method for the measurement of local glucose utilization and the mapping of local functional activity in the central nervous system. Int Rev Neurobiol 22:287–333

    Article  PubMed  CAS  Google Scholar 

  • Sprague JM (1991) The role of the superior colliculus in facilitating visual attention and form perception. Proc Natl Acad Sci USA 88:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Tipper CM, Cairo TA, Woodward TS, Phillips AG, Liddle PF, Ngan ET (2005) Processing efficiency of a verbal working memory system is modulated by amphetamine: an fMRI investigation. Psychopharmacology (Berl) 180:634–643

    Article  CAS  Google Scholar 

  • Tuor UI, McKenzie E, Tomanek B (2002) Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn Reson Imaging 20:707–712

    Article  PubMed  CAS  Google Scholar 

  • Veazey RB, Severin CM (1980) Efferent projections of the deep mesencephalic nucleus (pars medialis) in the rat. J Comp Neurol 190:245–258

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Yuan B, Hou ZL (1992) Role of the deep mesencephalic nucleus in the antinociception induced by stimulation of the anterior pretectal nucleus in rats. Brain Res 577:321–325

    Article  PubMed  CAS  Google Scholar 

  • Webb SS, Smith GM, Evans WO, Webb NC (1978) Toward the development of a potent, nonsedating, oral analgesic. Psychopharmacology (Berl) 60:25–28

    Article  CAS  Google Scholar 

  • Wilkins AJ, Shallice T, McCarthy R (1987) Frontal lesions and sustained attention. Neuropsychologia 25:359–365

    Article  PubMed  CAS  Google Scholar 

  • Willson MC, Wilman AH, Bell EC, Asghar SJ, Silverstone PH (2004) Dextroamphetamine causes a change in regional brain activity in vivo during cognitive tasks: a functional magnetic resonance imaging study of blood oxygen level-dependent response. Biol Psychiatry 56:284–291

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1980) The dopamine synapse and the notion of “pleasure centers” in the brain. Trends Neurosci 3:91–94

    Article  CAS  Google Scholar 

  • Yeomans JS (1982) The cells and axons mediating medial forebrain bundle reward. In: Hoebel BG, Novin D (eds) The neural basis of feeding and reward. Haer Institute, Brunswick, ME

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Malcolm Prior for MRI technical assistance. This work was funded by Shire pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. F. Fone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easton, N., Marshall, F., Fone, K.C.F. et al. Differential effects of the d- and l- isomers of amphetamine on pharmacological MRI BOLD contrast in the rat. Psychopharmacology 193, 11–30 (2007). https://doi.org/10.1007/s00213-007-0756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0756-5

Keywords

Navigation