Skip to main content

Advertisement

Log in

Unexpected anti-hypertrophic responses to low-level stimulation of protease-activated receptors in adult rat cardiomyocytes

  • Brief Communication
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Activators of protease-activated receptors PAR-1 and PAR-2 such as thrombin and synthetic hexapeptides promote hypertrophy of isolated neonatal cardiomyocytes at pathological concentrations. Since PAR-activating proteases often show dual actions at low vs. high concentrations, the potential hypertrophic effects of low-level PAR activation were examined. In H9c2 cardiomyoblasts, messenger RNA (mRNA) expression of the hypertrophic marker atrial natriuretic peptide (ANP) was significantly increased only by higher concentrations of thrombin, trypsin or the synthetic PAR-2 agonist SLIGRL. The dual PAR-1/PAR-2 agonist SFLLRN did not influence basal ANP mRNA expression in H9c2 cells. Low concentration of thrombin or trypsin (up to 0.1 U/mL) or of the synthetic ligands SFLLRN and SLIGRL (1 μM); however, all suppressed ANP mRNA expression stimulated by angiotensin II (Ang II). The PAR-1 selective ligand TFLLRN exerted a comparable effect as SFLLRN. In adult rat cardiomyocytes, protein synthesis determined by [3H]phenylalanine incorporation was not increased by various PAR agonists at concentrations tenfold lower than conventionally used to study PAR function in vitro (10 μM for SFLLRN or SLIGRL, 0.1 U/mL for thrombin or trypsin). The positive control endothelin-1 (ET-1, 60 nM) however significantly increased protein synthesis in adult rat cardiomyocytes. Addition of low concentrations of PAR agonists to cardiomyocytes treated with ET-1 or Ang II suppressed [3H]phenylalanine incorporation induced by the hypertrophic stimuli. The inhibitory effect of SFLLRN effect was partially reversed by the PAR-1 antagonist RWJ56110. These findings suggest that physiological concentrations of PAR activators may suppress hypertrophy, in contrast to the pro-hypertrophic effects evident at high concentrations. PAR-1 and PAR-2 may dynamically control cardiomyocyte growth, with the net effect critically dependent upon local agonist concentrations. The precise significance of proposed concept of bimodal PAR function in cardiomyocytes remains to be defined, particularly in vivo where hemodynamic and other regulatory factors may counteract or mask the direct cellular actions described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Antoniak S, Pawlinski R, Mackman N (2011) Protease-activated receptors and myocardial infarction. IUBMB Life 63:383–389. doi:10.1002/iub.441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Assem ES, Wan BY, Peh KH, Pearce FL (2004) Effect of PAR-activation on smooth muscle contractile response of guinea-pig trachea and ileum. Inflamm Res Off J Eur Histamine Res Soc 53(Suppl 1):S17–S18. doi:10.1007/s00011-003-0307-4

    CAS  Google Scholar 

  • Bae JS, Kim YU, Park MK, Rezaie AR (2009) Concentration dependent dual effect of thrombin in endothelial cells via Par-1 and Pi3 kinase. J Cell Physiol 219:744–751. doi:10.1002/jcp.21718

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borrelli V, Sterpetti AV, Coluccia P, Randone B, Cavallaro A, Santoro D’Angelo L et al (2001) Bimodal concentration-dependent effect of thrombin on endothelial cell proliferation and growth factor release in culture. J Surg Res 100:154–160. doi:10.1006/jsre.2001.6231

    Article  PubMed  CAS  Google Scholar 

  • Clark WA, Rudnick SJ, Simpson DG, LaPres JJ, Decker RS (1993) Cultured adult cardiac myocytes maintain protein synthetic capacity of intact adult hearts. Am J Physiol 264:H573–H582

    PubMed  CAS  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  PubMed  CAS  Google Scholar 

  • Erlich JH, Boyle EM, Labriola J, Kovacich JC, Santucci RA, Fearns C et al (2000) Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. Am J Pathol 157:1849–1862. doi:10.1016/S0002-9440(10)64824-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101.142243

    Article  PubMed  CAS  Google Scholar 

  • Glembotski CC, Irons CE, Krown KA, Murray SF, Sprenkle AB, Sei CA (1993) Myocardial alpha-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem 268:20646–20652

    PubMed  CAS  Google Scholar 

  • Janowski E, Cleemann L, Sasse P, Morad M (2006) Diversity of Ca2+ signaling in developing cardiac cells. Ann N Y Acad Sci 1080:154–164. doi:10.1196/annals.1380.014

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Wu J, Hua Y, Keep RF, Xiang J, Hoff JT et al (2002) Thrombin-receptor activation and thrombin-induced brain tolerance. J Cereb Blood Flow Metab 22:404–410. doi:10.1097/00004647-200204000-00004

    Article  PubMed  CAS  Google Scholar 

  • Lerner DJ, Chen M, Tram T, Coughlin SR (1996) Agonist recognition by proteinase-activated receptor 2 and thrombin receptor. Importance of extracellular loop interactions for receptor function. J Biol Chem 271:13943–13947

    Article  PubMed  CAS  Google Scholar 

  • Levy GA, Liu M, Ding J, Yuwaraj S, Leibowitz J, Marsden PA et al (2000) Molecular and functional analysis of the human prothrombinase gene (HFGL2) and its role in viral hepatitis. Am J Pathol 156:1217–1225. doi:10.1016/S0002-9440(10)64992-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  • Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84:136–145

    Article  PubMed  CAS  Google Scholar 

  • McBane RD 2nd, Miller RS, Hassinger NL, Chesebro JH, Nemerson Y, Owen WG (1997) Tissue prothrombin. Universal distribution in smooth muscle. Arterioscler Thromb Vasc Biol 17:2430–2436

    Article  PubMed  CAS  Google Scholar 

  • Moshal KS, Tyagi N, Moss V, Henderson B, Steed M, Ovechkin A et al (2005) Early induction of matrix metalloproteinase-9 transduces signaling in human heart end stage failure. J Cell Mol Med 9:704–713

    Article  PubMed  CAS  Google Scholar 

  • Murray MM, Forsythe B, Chen F, Lee SJ, Yoo JJ, Atala A et al (2006) The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res 24:508–515. doi:10.1002/jor.20054

    Article  PubMed  CAS  Google Scholar 

  • Pawlinski R, Tencati M, Hampton CR, Shishido T, Bullard TA, Casey LM et al (2007) Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 116:2298–2306. doi:10.1161/CIRCULATIONAHA.107.692764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ritchie RH, Schiebinger RJ, LaPointe MC, Marsh JD (1998) Angiotensin II-induced hypertrophy of adult rat cardiomyocytes is blocked by nitric oxide. Am J Physiol 275:H1370–H1374

    PubMed  CAS  Google Scholar 

  • Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD et al (2009) Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 124:279–300. doi:10.1016/j.pharmthera.2009.08.001

    Article  PubMed  CAS  Google Scholar 

  • Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, Tham YK, Sapra G, Qin C, Cemerlang N, Boey EJ, Jandeleit-Dahm K, Du XJ, McMullen JR (2012) Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55:3369–3381. doi:10.1007/s00125-012-2720-0

    Article  PubMed  CAS  Google Scholar 

  • Roderick HL, Higazi DR, Smyrnias I, Fearnley C, Harzheim D, Bootman MD (2007) Calcium in the heart: when it’s good, it’s very very good, but when it’s bad, it’s horrid. Biochem Soc Trans 35:957–961. doi:10.1042/BST0350957

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz AC, Dusting GJ, Ritchie RH (2000) Endothelial dysfunction limits the antihypertrophic action of bradykinin in rat cardiomyocytes. J Mol Cell Cardiol 32:1119–1126. doi:10.1006/jmcc.2000.1149

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz AC, Hood SG, Woods RL, Dusting GJ, Ritchie RH (2003) B-type natriuretic peptide prevents acute hypertrophic responses in the diabetic rat heart: importance of cyclic GMP. Diabetes 52:2389–2395

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz AC, Schror K, Rauch BH (2011) Direct inhibitors of thrombin and factor Xa attenuate clot-induced mitogenesis and inflammatory gene expression in human vascular smooth muscle cells. Thromb Haemost 106:561–562

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P et al (2000) Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 86:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Short J, Guo J, Steinberg SF (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91:532–539

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Guo J, Elouardighi H, Darrow AL, Andrade-Gordon P, Steinberg SF (2003) Mechanisms of protease-activated receptor-4 actions in cardiomyocytes. Role of Src tyrosine kinase. J Biol Chem 278:11714–11720

    Article  PubMed  CAS  Google Scholar 

  • Schluter KD, Piper HM (1999) Regulation of growth in the adult cardiomyocytes. FASEB J Off Publ Fed Am Soc Exp Biol 13(Suppl):S17–S22

    CAS  Google Scholar 

  • Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE (2007) SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol 102:350–358. doi:10.1007/s00395-007-0653-4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G (2000) The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A 97:2264–2269. doi:10.1073/pnas.040552897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takahashi T, Schunkert H, Isoyama S, Wei JY, Nadal-Ginard B, Grossman W et al (1992) Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Invest 89:939–946. doi:10.1172/JCI115675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tibbits GF, Xu L, Sedarat F (2002) Ontogeny of excitation-contraction coupling in the mammalian heart. Comparative biochemistry and physiology. Part A Mol Integr Physiol 132:691–698

    Article  Google Scholar 

  • Tiyyagura SR, Pinney SP (2006) Left ventricular remodeling after myocardial infarction: past, present, and future. Mt Sinai J Med N Y 73:840–851

    Google Scholar 

  • Yamazaki T, Komuro I, Yazaki Y (1998) Signalling pathways for cardiac hypertrophy. Cell Signal 10:693–698

    Article  PubMed  CAS  Google Scholar 

  • Zain J, Huang YQ, Feng X, Nierodzik ML, Li JJ, Karpatkin S (2000) Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells. Blood 95:3133–3138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Health and Medical Research Council of Australia and in part also by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anke C. Fender or Rebecca H. Ritchie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fender, A.C., Pavic, G., Drummond, G.R. et al. Unexpected anti-hypertrophic responses to low-level stimulation of protease-activated receptors in adult rat cardiomyocytes. Naunyn-Schmiedeberg's Arch Pharmacol 387, 1001–1007 (2014). https://doi.org/10.1007/s00210-014-1026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1026-9

Keywords

Navigation