Skip to main content
Log in

Neck analysis for biharmonic maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we study the blow up of a sequence of (both extrinsic and intrinsic) biharmonic maps in dimension four with bounded energy and show that there is no neck in this process. Moreover, we apply the method to provide new proofs to the removable singularity theorem and energy identity theorem of biharmonic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), Second edition, vol. 140. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Chang, S.Y.A., Wang, L., Yang, P.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ding, W.Y., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Commun. Anal. Geom. 3, 543–554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hélein, F.: Regularity of weakly harmonic maps between a surface and a Riemannian manifold. C. R. Acad. Sci. Paris Sér. I Math. (312), 591–596 (1991)

    MATH  Google Scholar 

  5. Hornung, P., Moser, R.: Energy identity for intrinsically biharmonic maps in four dimensions. Anal. PDE 5(1), 61–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lamm, T., Riviére, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33, 245–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Laurain, P., Rivière, T.: Energy quantization for biharmonic maps. Adv. Calc. Var. (6), 191–216 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Li, Y.X., Wang, Y.D.: A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck \(\alpha \)-harmonic maps. Adv. Math. 225, 1134–1184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, F.H., Wang, C.Y.: Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. PDE 6, 369–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, L.: No neck for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 52(1), 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moser, R.: A variational problem pertaining to biharmonic maps. Commun. Partial Differ. Equ. 33, 1654–1689 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Parker, T.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44, 595–633 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Commun. Pure Appl. Math. 50, 295–310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sacks, J., Uhlenbeck, K.: The existence of minimal \(2-\)spheres. Ann. Math. 113, 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scheven, C.: Dimension reduction for the singular set of biharmonic maps. Adv. Calc. Var. 1, 53–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Scheven, C.: An optimal partial regularity result for minimizers of an intrinsically defined second-order functional. Ann. I. H. Poincaré 26, 1585–1605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. PDE 33, 249–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, C.Y.: Biharmonic maps from \(\mathbb{R}^4\) into a Riemannian manifold. Math. Z. 247, 65–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, C.Y.: Stationary biharmonic maps from \(\mathbb{R}^m\) into a Riemannian manifold. Commun. Pure Appl. Math. 57, 419–444 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, C.Y.: Remarks on biharmonic maps into spheres. Calc. Var. PDE 21, 221–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C.Y., Zheng, S.Z.: Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete Contin. Dyn. Syst. Ser. A (in press)

  22. Wang, C.Y., Zheng, S.Z.: Energy identity of approximate biharmonic maps to Riemannian manifolds and its application. J. Funct. Anal. 263, 960–987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yin.

Additional information

The research of the author Hao Yin is supported by NSFC 11101272 and NSFC 11471300.

Appendix

Appendix

Proof of Theorem 2.1

It will be convenient to assume that \(\overline{u}=0\). Since u is a biharmonic map, then it satisfies the Euler–Lagrange

$$\begin{aligned} \triangle ^2u=\nabla ^3u\#\nabla u+\nabla ^2 u\#\nabla ^2 u+\nabla ^2 u\#\nabla u\#\nabla u+\nabla u\#\nabla u\#\nabla u\#\nabla u. \end{aligned}$$

Let \(0<\sigma <1\) and \(\sigma '=\frac{1+\sigma }{2}\), take cut-off function \(\varphi \in C_0^\infty (B_{\sigma '})\) satisfying \(\varphi \equiv 1\) in \(B_\sigma \), \(|\nabla \varphi |\le \frac{4}{1-\sigma }\).

Direct computation shows that

$$\begin{aligned} \triangle ^2(\varphi u)= & {} \triangle (\varphi \triangle u+2\nabla u \nabla \varphi +u\triangle \varphi )\\= & {} \varphi \triangle ^2u+4\nabla \triangle u\nabla \varphi +2\triangle u\triangle \varphi +4\nabla ^2u\nabla ^2\varphi +4\nabla u\nabla \triangle \varphi +u\triangle ^2\varphi \\= & {} (\nabla ^3u\#\nabla u+\nabla ^2 u\#\nabla ^2 u+\nabla ^2 u\#\nabla u\#\nabla u+\nabla u\#\nabla u\#\nabla u\#\nabla u)\varphi \\&+\,\nabla ^3 u\#\nabla \varphi +\nabla ^2u\#\nabla ^2\varphi +\nabla u\#\nabla ^3\varphi +u\nabla ^4\varphi \\= & {} (\nabla ^3(\varphi u)\#\nabla u+\nabla ^2 (\varphi u)\#\nabla ^2 u+\nabla ^2 u\#\nabla u\#\nabla (\varphi u)+\nabla u\#\nabla u\#\nabla u\#\nabla (\varphi u))\\&+\,\nabla ^3 u\#\nabla \varphi +\nabla ^2u\#\nabla ^2\varphi +\nabla u\#\nabla ^3\varphi +u\nabla ^4\varphi +\nabla ^2u\#\nabla u\#\nabla \varphi +\nabla ^2\varphi \#\nabla u\#\nabla u\\&+\,\nabla u\#\nabla u\#\nabla u\#\nabla \varphi . \end{aligned}$$

Assume first that \(1<p<\frac{4}{3}\). By the standard \(L^p\) theory, we have

$$\begin{aligned} \Vert \nabla ^4(\varphi u)\Vert _{L^p(B_1)}\le & {} C\left( \Vert \nabla u\Vert _{L^4(B_1)}\Vert \nabla ^3(\varphi u)\Vert _{L^{\frac{4p}{4-p}}(B_1)} +\Vert \nabla ^2 u\Vert _{L^2(B_1)}\Vert \nabla ^2(\varphi u)\Vert _{L^{\frac{4p}{4-2p}}(B_1)}\right. \\&+\,\Vert \nabla ^2 u\Vert _{L^2(B_1)}\Vert \nabla u\Vert _{L^4(B_1)}\Vert \nabla (\varphi u)\Vert _{L^{\frac{4p}{4-3p}}(B_1)}+\Vert \nabla u\Vert ^3_{L^4(B_1)}\Vert \nabla (\varphi u)\Vert _{L^{\frac{4p}{4-3p}}(B_1)} \\&+\,\frac{\Vert \nabla ^3 u\Vert _{L^p(B_{\sigma '})}}{1-\sigma }+\frac{\Vert \nabla ^2 u\Vert _{L^p(B_{\sigma '})}}{(1-\sigma )^2} +\frac{\Vert \nabla u\Vert _{L^p(B_{\sigma '})}}{(1-\sigma )^3}\\&+\,\frac{\Vert u\Vert _{L^p(B_{\sigma '})}}{(1-\sigma )^4} +\frac{\Vert \nabla ^2 u\#\nabla u\Vert _{L^p(B_{\sigma '})}}{1-\sigma }+\frac{\Vert \nabla u\#\nabla u\Vert _{L^p(B_{\sigma '})}}{(1-\sigma )^2}\\&\left. +\,\frac{1}{1-\sigma }\Vert \nabla u\#\nabla u\#\nabla u\Vert _{L^p(B_{\sigma '})} \right) , \end{aligned}$$

By the Sobolev embedding, if \(\epsilon _0\) is sufficiently small, we get

$$\begin{aligned} \Vert \nabla ^4(\varphi u)\Vert _{L^p(B_1)}\le & {} C\big ( \frac{1}{1-\sigma }\Vert \nabla ^3 u\Vert _{L^p(B_{\sigma '})}\\&+\,\frac{1}{(1-\sigma )^2}\Vert \nabla ^2 u\Vert _{L^p(B_{\sigma '})} +\frac{1}{(1-\sigma )^3}\Vert \nabla u\Vert _{L^p(B_{\sigma '})}\\&+\,\frac{1}{(1-\sigma )^4}\Vert u\Vert _{L^p(B_{\sigma '})} +\frac{1}{1-\sigma }\Vert \nabla ^2 u\#\nabla u\Vert _{L^p(B_{\sigma '})}\\&+\,\frac{1}{(1-\sigma )^2}\Vert \nabla u\#\nabla u\Vert _{L^p(B_{\sigma '})}\\&+\,\frac{1}{1-\sigma }\Vert \nabla u\#\nabla u\#\nabla u\Vert _{L^p(B_{\sigma '})} \big ). \end{aligned}$$

Setting

$$\begin{aligned} \Psi _j=\sup _{0\le \sigma \le 1}(1-\sigma )^j\Vert \nabla ^j u\Vert _{L^p(B_{\sigma })} \end{aligned}$$

and noticing that \(1-\sigma =2(1-\sigma ')\),\(1<p<\frac{4}{3}\), we have

$$\begin{aligned} \Psi _4\le & {} C\left( \Psi _3+\Psi _2+\Psi _1+\Psi _0+\Vert \nabla ^2 u\#\nabla u\Vert _{L^p(B_1)}+\Vert \nabla u\#\nabla u\Vert _{L^p(B_1)}\right. \\&\left. +\,\Vert \nabla u\#\nabla u\#\nabla u\Vert _{L^p(B_1)}\right) \\\le & {} C\left( \Psi _3+\Psi _2+\Psi _1+\Psi _0+ \Vert \nabla ^2u\Vert _{L^2(B_1)}+\Vert \nabla u\Vert _{L^4(B_1)}\right) . \end{aligned}$$

Using the interpolation inequality as in Sect. 3.2, we get

$$\begin{aligned} \Psi _4\le & {} C\left( \Psi _0+\Vert \nabla ^2u\Vert _{L^2(B_1)}+\Vert \nabla u\Vert _{L^4(B_1)}\right) \\\le & {} C\left( \Vert \nabla ^2u\Vert _{L^2(B_1)}+\Vert \nabla u\Vert _{L^4(B_1)}\right) . \end{aligned}$$

We start with \(p=\frac{16}{13}\). The above argument implies that

$$\begin{aligned} \left\| u\right\| _{W^{4,\frac{16}{13}}(B_{7/8})}\le C (\left\| \nabla ^2 u\right\| _{L^2(B_1)} +\left\| \nabla u\right\| _{L^4}(B_1)). \end{aligned}$$

The Sobolev embedding theorem implies

$$\begin{aligned} \left\| \nabla ^3 u\right\| _{L^{\frac{16}{9}}(B_{7/8})} + \left\| \nabla ^2 u\right\| _{L^{\frac{16}{5}}(B_{7/8})} +\left\| \nabla u\right\| _{L^{16}(B_{7/8})}\le C (\left\| \nabla ^2 u\right\| _{L^2(B_1)} +\left\| \nabla u\right\| _{L^4}(B_1)). \end{aligned}$$

With this, we can bound the \(L^{\frac{8}{5}}\) norm of the right hand side of the Euler–Lagrange equation. The interior \(L^p\) estimate then shows u is bounded in \(W^{4,\frac{8}{5}}\) in \(B_{3/4}\). The lemma is then proved by bootstrapping method.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yin, H. Neck analysis for biharmonic maps. Math. Z. 283, 807–834 (2016). https://doi.org/10.1007/s00209-016-1622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1622-0

Keywords

Mathematics Subject Classification

Navigation