Skip to main content
Log in

A Dirac field interacting with point nuclear dynamics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The system describing a single Dirac electron field coupled with classically moving point nuclei is presented and studied. The model is a semi-relativistic extension of corresponding time-dependent one-body Hartree-Fock equation coupled with classical nuclear dynamics, already known and studied both in quantum chemistry and in rigorous mathematical literature. We prove local existence of solutions for data in \(H^\sigma \) with \(\sigma \in [1,\frac{3}{2}[\). In the course of the analysis a second new result of independent interest is discussed and proved, namely the construction of the propagator for the Dirac operator with several moving Coulomb singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Table of Integral Transforms I, Bateman Manuscript Project, Erdely ed. Bateman, Harry, McGrow-Hill book company, New York (1954)

  2. Baudouin, L.: Existence and regularity of the solution of a time dependent Hartree-Fock equation coupled with a classical nuclear dynamics. Rev. Mat. Complut. 18(2), 285–314 (2005)

    Article  MathSciNet  Google Scholar 

  3. Baudouin, L.: A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Port. Math. 63(3), 293–325 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. vol. 343, pp. XVI, 524. Springer, Grundlehren der mathematischen Wissenschaften (2011)

  5. Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Relativistic Quantum Theory, vol. 4, 1st edn. Pergamon Press, Oxford (1971)

    Google Scholar 

  6. Burq, N., Planchon, F., Stalker, J.G., Tahvildar-Zadeh Shadi, A.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203(2), 519–549 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cacciafesta, F.: Virial identity and dispersive estimates for the n-dimensional Dirac equation. J. Math. Sci. Univ. Tokyo 18, 1–23 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cacciafesta, F.: Global small solutions to the critical Dirac equation with potential. Nonlinear Anal. 74, 6060–6073 (2011)

    Article  MathSciNet  Google Scholar 

  9. Cacciafesta, F., Fanelli, L.: Dispersive estimates for the Dirac equation in an Aharonov-Bohm field. J. Differ. Equ. 263(7), 4382–4399 (2017)

    Article  MathSciNet  Google Scholar 

  10. Cacciafesta, F., Séré, É.: Local smoothing estimates for the Dirac Coulomb equation in 2 and 3 dimensions. J. Funct. Anal. 271(8), 2339–2358 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cancés, E., Le Bris, C.: On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics. Math. Models Methods Appl. Sci. 9(7), 963–990 (1999)

    Article  MathSciNet  Google Scholar 

  12. Cazacu, C.: A new proof of the Hardy-Rellich inequality in any dimension. arxiv-eprints, arxiv:1809.07506

  13. Chadam, J.M., Glassey, R.T.: On the maxwell-dirac equations with zero magnetic field and their solution in two space dimensions. J. Math. Anal. Appl. 53, 495–507 (1976)

    Article  MathSciNet  Google Scholar 

  14. Deckert, D.-A., Oelker, M.: Distinguished self-adjoint extension of the two-body Dirac operator with Coulomb interaction, (2018) arXiv:1805.09634v1

  15. Derezinski, J.: Open problems about many-body Dirac operators. IAMP News Bulletin, Jan. 2012, 11–16 (2012)

    Google Scholar 

  16. Escobedo, M., Vega, L.: A semilinear Dirac equation in \(H^\sigma ({ R}^3)\) for \(\sigma >1\). SIAM J. Math. Anal. 28(2), 338–362 (1997)

    Article  MathSciNet  Google Scholar 

  17. Esteban, M.J., Lewin, M., Séré, É.: Variational methods in relativistic quantum mechanics. Bull. Amer. Math. Soc. (N.S.) 45(4), 535–593 (2008)

    Article  MathSciNet  Google Scholar 

  18. Esteban, M.J., Loss, M.: Self-adjointness for Dirac operators via Hardy-Dirac inequalities. J. Math. Phys. 48(11), 112107 (2007)

    Article  MathSciNet  Google Scholar 

  19. Fanelli, L., Felli, V., Fontelos, M., Primo, A.: Time decay of scaling critical electromagnetic Schrödinger flows. Comm. Math. Phys. 324(3), 1033–1067 (2013)

    Article  MathSciNet  Google Scholar 

  20. Gallone, M.: Self-adjoint extensions of Dirac operator with coulomb potential. In: Dell’Antonio, G., Michelangeli, A. (eds.) Advances in Quantum Mechanics, INdAM-Springer series, vol. 18, pp. 49–64. Springer, Berlin (2017)

    Google Scholar 

  21. Gallone, M., Michelangeli, A.: Discrete spectra for critical Dirac-Coulomb Hamiltonians. J. Math. Phys. 59, 062108 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kato, T.: Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan 5, 208–234 (1953)

    Article  MathSciNet  Google Scholar 

  23. Kato, T.: On linear differential equations in Banach spaces. Comm. Pure. Appl. Math. 9, 479–486 (1956)

    Article  MathSciNet  Google Scholar 

  24. Kato, T.: Perturbation Theory for Linear Operators. Springer-Verlag New York Inc., New York (1966)

    Book  Google Scholar 

  25. Kato, T.: Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo, Sec. I 17, 241–258 (1970)

    MathSciNet  MATH  Google Scholar 

  26. Kato, T., Yajima, K.: Dirac equations with moving nuclei. Ann. l’I.H.P., A 54(2), 209–221 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Klaus, M.: Dirac operators with several Coulomb singularities. Helv. Phys. Acta 53(1980), 463–482 (1981)

    MathSciNet  Google Scholar 

  28. Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. AMS 42(3), 291–363 (2005)

    Article  MathSciNet  Google Scholar 

  29. Levitan, B.M., Otelbaev, M.: Conditions for the selfadjointness of Schrödinger and Dirac operators. Dokl. Akad. Nauk SSSR 235, 768–771 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Machihara, S., Tsutaya, K.: Scattering theory for the Dirac equation with a nonlocal term. Proc. Roy. Soc. Edinburgh Sect. A 139, 867–878 (2009)

    Article  MathSciNet  Google Scholar 

  31. Noja, D., Posilicano, A.: The wave equation with one point interaction and the (linearized) classical electrodynamics of a point particle. Ann. l’I.H.P., Sect. A 68, 351–377 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Noja, D., Posilicano, A.: On the point limit of the Pauli-Fierz model. Ann. l’I.H.P. Sect. A 71, 425–457 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Okazawa, N., Yoshii, K.: Linear Schrödinger evolution equations with moving Coulomb singularities. J. Differ. Equ. 254(7), 2964–2999 (2013)

    Article  Google Scholar 

  34. Okazawa, N., Yoshii, K.: Linear evolution equations with strongly measurable families and application to the Dirac equation. Disc. Cont. Dyn. Syst. Ser S 4(3), 723–744 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  36. Rellich, F.: Halbbeschränkte differentialoperatoren höherer ordnung. In: J.C.H. Gerretsen, J. de Groot (eds.) Proceedings of the International Congress of Mathematicians 1954, volume III, pp. 243–250. Noordhoff, Groningen (1956)

  37. Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  38. Schmincke, U.W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z. 126, 71–81 (1972)

    Article  MathSciNet  Google Scholar 

  39. Segal, I.: Nonlinear semigroups. Ann. Math. 78, 339–364 (1963)

    Article  MathSciNet  Google Scholar 

  40. Schmid, J., Griesemer, M.: Kato’s theorem on the integration of non- autonomous linear evolution equations. Math. Phys. Anal. Geom 17(3–4), 265–271 (2014)

    Article  MathSciNet  Google Scholar 

  41. Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  42. Schnaubelt, R.: Well posedness and asymptotic behaviour of non autonomous linear evolution equations. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis. Birkhäuser, Springer, Basel (2002)

  43. Thaller, B.: The Dirac equation springer-verlag. In: Beiglböck, W., Lieb, E., Thirring, W. (eds.) Texts and Monographs in Physics, p. 357. Springer, Berlin, Heidelberg, New York (1992)

Download references

Acknowledgements

We are grateful to prof. Éric Séré for having introduced us to the present problem and for several enlightening discussions on the topic, to Matteo Gallone for discussions and comments and to Jonas Lampart for pointing out a mistake in our original argument, that led to the present version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Cacciafesta.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: a remark on regularity of the ground state of Dirac-Coulomb Hamiltonian

Appendix: a remark on regularity of the ground state of Dirac-Coulomb Hamiltonian

Let us consider the Sobolev regularity of Dirac-Coulomb eigenstates when \(Z<\sqrt{3}/2\).

In particular, we are interested in the ground state. Its generic component has the form (see [5, 21])

$$\begin{aligned} f(r)=\text {const}\times e^{-a r} r^{b-1} \end{aligned}$$
(4.1)

where

$$\begin{aligned} a=Z\ ,\ \ \ \ \ b=\sqrt{1-(\alpha Z)^2} \equiv \sqrt{1- \nu ^2},\ \ \ \ \nu \in (0,1) \end{aligned}$$
(4.2)

The Fourier transform of the above radial function satisfies

$$\begin{aligned} {\hat{f}}(k)=\frac{2}{\sqrt{2}\pi }\frac{1}{k}\int _0^{\infty }\ rf(r)\sin (kr)\ dr \end{aligned}$$

The above integral is the Fourier sine-transform of \(rf(r)=\text {const}\times e^{-a r} r^b\).

According to the Table of Integral Transforms I, Bateman Manuscript Project, formula 2.4 (7) pag 72 in [1], one has

$$\begin{aligned} {\hat{f}}(k)&=\frac{2}{\sqrt{2}\pi }\frac{1}{k} \Gamma (b +1)(a^2+k^2)^{-\frac{1}{2}(b+1)} \sin \left[ (b+1)\tan ^{-1}\left( \frac{k}{a}\right) \right] \end{aligned}$$
(4.3)
$$\begin{aligned}&=\text {const}\times \frac{1}{k} (a^2+k^2)^{-\frac{1}{2}(b+1)} \sin \left[ (b+1)\tan ^{-1}\left( \frac{k}{a}\right) \right] \end{aligned}$$
(4.4)

This is regular at the origin while the asymptotic behavior at infinity is given by

$$\begin{aligned} {\hat{f}} \sim k^{-(b+2)} \end{aligned}$$
(4.5)

Now \(f\in H^\sigma \iff |{\hat{f}}|^2(1+k^2)^s\) is integrable in \(\mathbb {R}^3\), from which we get the condition \(f\in H^\sigma \iff k^{(-2b-4)}(1+k^2)^sk^2\) is integrable at infinity, i.e.

$$\begin{aligned} 2b+2-2\sigma>1 \ \ \ \iff \ \ \ \sqrt{1-\nu ^2}>s-\frac{1}{2}\ \ \end{aligned}$$
(4.6)

This implies that

  1. 1.

    \(f\in H^1\ \ \forall \,\nu \in (0,\frac{\sqrt{3}}{2})\)

  2. 2.

    \(f\notin H^{\frac{3}{2}}\ \ \text {whatever}\ \ \ \nu \in (0,\frac{\sqrt{3}}{2})\)

  3. 3.

    \(f\in H^\sigma \ \ \ \sigma =\sigma (\nu )=\frac{3}{2}-\epsilon \) with \(\nu ^2<2\epsilon -\epsilon ^2\)

So the regularity is better and better (but lower than \(H^{3/2}\)) with the decreasing of the charge Z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciafesta, F., de Suzzoni, AS. & Noja, D. A Dirac field interacting with point nuclear dynamics. Math. Ann. 376, 1261–1301 (2020). https://doi.org/10.1007/s00208-019-01813-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01813-8

Navigation