Skip to main content
Log in

A theorem of Tits type for automorphism groups of projective varieties in arbitrary characteristic

With an appendix by Tomohide Terasoma

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a theorem of Tits type for automorphism groups of projective varieties over an algebraically closed field of arbitrary characteristic, which was first conjectured by Keum, Oguiso and Zhang for complex projective varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A morphism is called a locally closed immersion (or an immersion for short), if it can be factored as a closed immersion followed by an open immersion. To prove the claim, two useful facts will be implicitly used. One is that a composition of immersions of schemes is an immersion (cf. [30, Tag 02V0]). Another one is as follows. Let \(X_1 \rightarrow X_2 \rightarrow X_3\) be morphisms of schemes. If \(X_1 \rightarrow X_3\) is an immersion, then \(X_1 \rightarrow X_2\) is an immersion (see e.g. [30, Tag 07RK]).

  2. We remark that in the proof of Theorem 1.1 or Lemma 2.13, we only need the positive semi-definiteness of the quadratic form \(q_X\).

  3. It is necessary to take the closure since the linear image of a closed convex cone may not be closed any more.

  4. Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan, terasoma@ms.u-tokyo.ac.jp.

References

  1. Abramovich, D.: Subvarieties of semiabelian varieties. Composit. Math. 90(1), 37–52 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Berthelot, P., Grothendieck, A., Illusie, L. (eds.), Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Avec la collaboration de D. Ferrand, J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J.-P. Serre

  3. Birkhoff, G.: Linear transformations with invariant cones. Am. Math. Mon. 74, 274–276 (1967)

    MathSciNet  MATH  Google Scholar 

  4. Brion, M.: Some Structure Theorems for Algebraic Groups, Algebraic Groups: Structure and Actions, Proc. Sympos. Pure Math., vol. 94. American Mathematical Society, Providence, pp. 53–126 (2017)

  5. Campana, F., Wang, F., Zhang, D.-Q.: Automorphism groups of positive entropy on projective threefolds. Trans. Am. Math. Soc. 366(3), 1621–1638 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Dang, N.-B.: Degrees of iterates of rational maps on normal projective varieties (preprint) (2017). arXiv:1701.07760

  7. Dinh, T.-C.: Tits alternative for automorphism groups of compact Kähler manifolds. Acta Math. Vietnam. 37(4), 513–529 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Dinh, T.-C., Sibony, N.: Groupes commutatifs d’automorphismes d’une variété kählérienne compacte. Duke Math. J. 123(2), 311–328 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dinh, T.-C., Hu, F., Zhang, D.-Q.: Compact Kähler manifolds admitting large solvable groups of automorphisms. Adv. Math. 281, 333–352 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Duncan, A., Reichstein, Z.: Pseudo-reflection groups and essential dimension. J. Lond. Math. Soc. (2) 90(3), 879–902 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Esnault, H., Srinivas, V.: Algebraic versus topological entropy for surfaces over finite fields. Osaka J. Math. 50(3), 827–846 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Esnault, H., Oguiso, K., Yu, X.: Automorphisms of elliptic K3 surfaces and Salem numbers of maximal degree. Algebr. Geom. 3(4), 496–507 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Fulger, M., Lehmann, B.: Positive cones of dual cycle classes. Algebr. Geom. 4(1), 1–28 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Fulton, W.: Intersection theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin (1998)

  15. Hacon, C.D., Patakfalvi, Z., Zhang, L.: Birational characterization of abelian varieties and ordinary abelian varieties in characteristic \(p>0\)(preprint) (2017). arXiv:1703.06631

  16. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Google Scholar 

  17. Hu, F.: Cohomological and numerical dynamical degrees on abelian varieties (preprint) (2019). arXiv:1901.02618

  18. Jouanolou, J.-P.: Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42. Birkhäuser, Boston (1983)

    MATH  Google Scholar 

  19. Kawamata, Y.: Characterization of abelian varieties. Composit. Math. 43(2), 253–276 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Keum, J.H., Oguiso, K., Zhang, D.-Q.: Conjecture of Tits type for complex varieties and theorem of Lie–Kolchin type for a cone. Math. Res. Lett. 16(1), 133–148 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kleiman, S.L.: The Picard Scheme, Fundamental Algebraic Geometry: Grothendieck’s FGA Explained, Mathematical Surveys and Monographs, vol. 123, pp. 235–321. American Mathematical Society, Providence (2005)

  22. Kleiman, S.L., Altman, A.B.: Bertini theorems for hypersurface sections containing a subscheme. Commun. Algebra 7(8), 775–790 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Lang, S.: Abelian Varieties. Springer, New York. Reprint of the 1959 original (1983)

  24. Lazarsfeld, R.: Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48. Springer, Berlin, Classical setting: line bundles and linear series (2004)

  25. Luo, Z.H.: Kodaira dimension of algebraic function fields. Am. J. Math. 109(4), 669–693 (1987)

    MathSciNet  MATH  Google Scholar 

  26. Meng, S., Zhang, D.-Q.: Jordan property for non-linear algebraic groups and projective varieties. Am. J. Math. 140(4), 1133–1145 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Mumford, D.: Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London (1970)

  28. Patakfalvi, Z.: On subadditivity of Kodaira dimension in positive characteristic over a general type base. J. Algebr. Geom. 27(1), 21–53 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Serre, J.-P.: Morphismes universels et variétés d’albanese, Exposés de séminaires (1950–1999), Documents Mathématiques (Paris), vol. 1, pp. 141–160. Société Mathématique de France, Paris (2001)

  30. The Stacks Project Authors, Stacks Project (2019). https://stacks.math.columbia.edu

  31. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)

    MathSciNet  MATH  Google Scholar 

  32. Truong, T.T.: Relative dynamical degrees of correspondences over a field of arbitrary characteristic. J. Reine Angew. Math. arXiv:1605.05049, https://doi.org/10.1515/crelle-2017-0052

  33. Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, vol. 439. Springer, Berlin (1975)

    MATH  Google Scholar 

  34. Xie, J.: Periodic points of birational transformations on projective surfaces. Duke Math. J. 164(5), 903–932 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, D.-Q.: A theorem of Tits type for compact Kähler manifolds. Invent. Math. 176(3), 449–459 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Zhang, D.-Q.: \(n\)-dimensional projective varieties with the action of an abelian group of rank \(n-1\). Trans. Am. Math. Soc. 368(12), 8849–8872 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank De-Qi Zhang for many inspiring discussions and comments. He also thanks Dragos Ghioca and Zinovy Reichstein for their support and helpful comments, Mihai Fulger and Brian Lehmann for answering several questions regarding to their paper [13]. He is grateful to Keiji Oguiso for his help and useful suggestions, the referee for many valuable comments. Last but not least, the author is deeply indebted to Tomohide Terasoma for providing the appendix which elaborates the reasonability of the finite generation condition in Theorem 1.1(2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Hu.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fei Hu was partially supported by a UBC-PIMS Postdoctoral Fellowship.

Appendix A: An example of a solvable subgroup of an automorphism group

Appendix A: An example of a solvable subgroup of an automorphism group

1.1 Tomohide TerasomaFootnote 4

This is an example of a finitely generated solvable subgroup of the automorphism group of a projective variety whose homological trivial part is infinitely generated.

1.2 A.1. Free groups generated by two elements

Let \(F_2=\langle a, b\rangle \) be a free group generated by two elements ab. Let

$$\begin{aligned} F'_2 :=[F_2,F_2] \quad \text {and}\quad F''_2 :=[F'_2,F'_2] \end{aligned}$$

be the first and second derived subgroup of \(F_2\), respectively. Then the maximal abelian quotient group \(F_2^{{\text {ab}}} :=F_2/F'_2\) is isomorphic to the free abelian group of rank 2 generated by the image \(\bar{a}, \bar{b}\) of ab. The group \(F_2\) acts on the abelian group \((F'_2)^{{\text {ab}}} :=F_2'/F_2''\) by the adjoint action \({\text {ad}}(g) \in {\text {Aut}}((F'_2)^{{\text {ab}}})\) for \(g\in F_2\) defined by

$$\begin{aligned} {\text {ad}}(g)(s)=gsg^{-1}. \end{aligned}$$

Since

$$\begin{aligned}{}[{\text {ad}}(g),{\text {ad}}(h)]={\text {ad}}(g){\text {ad}}(h) {\text {ad}}(g)^{-1}{\text {ad}}(h)^{-1}={\text {ad}}([g,h]) \end{aligned}$$

and

$$\begin{aligned}{}[g,h]w[g,h]^{-1}=w \ \mathrm{mod }\ F_2'' \end{aligned}$$

for any \(w\in F_2'\), we have

$$\begin{aligned} {\text {ad}}(g){\text {ad}}(h)={\text {ad}}(h){\text {ad}}(g)\in {\text {Aut}}((F'_2)^{{\text {ab}}}). \end{aligned}$$

Thus the above adjoint action of \(F_2\) on \((F'_2)^{{\text {ab}}}\) induces an adjoint action of \(F_2^{{\text {ab}}}\) on \((F'_2)^{{\text {ab}}}\). Therefore, \((F'_2)^{{\text {ab}}}\) becomes a module over a (commutative) Laurent polynomial ring \(\mathbb {Z}[{\text {ad}}(\bar{a})^{\pm 1},{\text {ad}}(\bar{b})^{\pm 1}]\) generated by two elements \({\text {ad}}(\bar{a}),{\text {ad}}(\bar{b})\).

Lemma A.1

The group \((F'_2)^{{\text {ab}}}=F_2'/F_2''\) is generated by [ab] over \(\mathbb {Z}[{\text {ad}}(\bar{a})^{\pm 1},{\text {ad}}(\bar{b})^{\pm 1}]\).

Proof

We have

$$\begin{aligned}{}[gh,x]= ghxh^{-1}g^{-1}x^{-1}= ghxh^{-1}x^{-1}g^{-1}gxg^{-1}x^{-1}={\text {ad}}(g)([h,x])\cdot [g,x] \end{aligned}$$

and \([g,h]=[h,g]^{-1}\). By writing the product of \((F'_2)^{{\text {ab}}}\) additively, we have

$$\begin{aligned}{}[gh,x]={\text {ad}}(g)([h,x])+[g,x] \text { and } [g,h]=-[h,g]. \end{aligned}$$

The lemma follows from these relations. \(\square \)

1.3 A.2. A group homomorphism from \(F_2\) to \(\mathrm {PGL}(2,\mathbb {K})\)

Let \(\mathbb {K}\) be an algebraically closed field whose transcendental degree over the prime field \(\mathbb {k}\) is greater than or equal to 2. Let \(\alpha , \beta \) be elements algebraically independent over \(\mathbb {k}\). We set

$$\begin{aligned} \widetilde{A}= \left( \begin{matrix} \alpha &{}\quad 1 \\ 0 &{}\quad 1 \end{matrix}\right) , \quad \widetilde{B}= \left( \begin{matrix} 1 &{}\quad 0 \\ 0 &{}\quad \beta \end{matrix} \right) . \end{aligned}$$

The class of \(\widetilde{A}, \widetilde{B}\) in \(\mathrm {PGL}(2,\mathbb {K})={\text {Aut}}(\mathbf {P}_\mathbb {K}^1)\) is denoted by AB. We define a group homomorphism

$$\begin{aligned} \varphi :F_2 \longrightarrow \mathrm {PGL}(2,\mathbb {K})\quad \text {via } \varphi (a)=A, \varphi (b)=B. \end{aligned}$$

One can easily check the following lemma.

Lemma A.2

The image of \(F_2'\) under \(\varphi \) is contained in

$$\begin{aligned} N=\left\{ \left( \begin{matrix} 1 &{}\quad n \\ 0 &{}\quad 1 \end{matrix}\right) : n\in \mathbb {K}\right\} . \end{aligned}$$

Since N is an abelian group, the image of \(F_2''\) under \(\varphi \) is the identity group. Thus we have a homomorphism between abelian groups:

$$\begin{aligned} \varphi ' :(F_2')^{{\text {ab}}} = F_2'/F_2'' \longrightarrow N. \end{aligned}$$
(A.1)

We introduce an \(R=\mathbb {Z}[\xi ^{\pm 1},\eta ^{\pm 1}]\)-module structure on the abelian group N by setting

$$\begin{aligned} \xi ^i\eta ^j \left( \begin{matrix} 1 &{}\quad n \\ 0 &{}\quad 1 \end{matrix}\right) = \left( \begin{matrix} 1 &{}\quad \alpha ^i\beta ^{-j}n \\ 0 &{}\quad 1 \end{matrix}\right) . \end{aligned}$$

By a direct calculation, we have the following lemma.

Lemma A.3

Via the identification between \(\mathbb {Z}[{\text {ad}}(\bar{a})^{\pm 1},{\text {ad}}(\bar{b})^{\pm 1}]\) and \(R=\mathbb {Z}[\xi ^{\pm 1},\eta ^{\pm 1}]\) given by

$$\begin{aligned} \xi ={\text {ad}}(\bar{a}),\quad \eta ={\text {ad}}(\bar{b}), \end{aligned}$$

the homomorphism \(\varphi '\) becomes an R-homomorphism.

Then the image of the commutator \([a,b] \in F_2'\) under the homomorphism \(\varphi \) is equal to

$$\begin{aligned}{}[A,B]=\left( \begin{matrix} 1 &{}\quad 1-\beta ^{-1} \\ 0 &{}\quad 1 \end{matrix}\right) . \end{aligned}$$

By Lemma A.1, \((F_2')^{{\text {ab}}}\) is generated by [ab] as a \(\mathbb {Z}[{\text {ad}}(\bar{a})^{\pm 1},{\text {ad}}(\bar{b})^{\pm 1}]\)-module. Therefore, the image of \(\varphi '\) in the abelian group N is equal to

$$\begin{aligned}&\mathbb {Z}[\xi ^{\pm 1},\eta ^{\pm 1}]\left( \begin{matrix} 1 &{}\quad 1-\beta ^{-1} \\ 0 &{}\quad 1 \end{matrix}\right) \nonumber \\&\quad = \left\{ \left( \begin{matrix} 1 &{}\quad n \\ 0 &{}\quad 1 \end{matrix}\right) : n\in \mathbb {Z}[\alpha ^{\pm 1},\beta ^{\pm 1}](1-\beta ^{-1}) \right\} , \end{aligned}$$
(A.2)

which is not finitely generated since our \(\alpha \) and \(\beta \) are assumed to be algebraically independent over \(\mathbb {k}\).

1.4 A.3. Homological trivial part of a finitely generated solvable subgroup of automorphisms

Let \(\mathbb {K}\) be the field as in Sect. A.2. Let Y be a smooth projective K3 surface over \(\mathbb {K}\) such that the automorphism group \({\text {Aut}}(Y)\) of Y contains a subgroup M isomorphic to \(\mathbb {Z}^2\). We choose a generator \(\{p,q\}\) of M. We set \(X = \mathbf {P}_\mathbb {K}^1\times Y\). We define the homologically trivial part \({\text {Aut}}^0(X)\) of \({\text {Aut}}(X)\) by

$$\begin{aligned} {\text {Ker}}(\rho :{\text {Aut}}(X) \longrightarrow \mathrm {GL}(H^*(X,\mathbb {Q}))). \end{aligned}$$

Then \({\text {Aut}}^0(X)\) is isomorphic to \({\text {Aut}}(\mathbf {P}_\mathbb {K}^1)=\mathrm {PGL}(2,\mathbb {K})\). Let G be the subgroup of \({\text {Aut}}(X)\) generated by

$$\begin{aligned} s=(A, p),\quad t=(B, q) \in {\text {Aut}}(\mathbf {P}_\mathbb {K}^1)\times {\text {Aut}}(Y), \end{aligned}$$

where AB are elements in \(\mathrm {PGL}(2,\mathbb {K})\) defined in Sect. A.2. Then G becomes a finitely generated solvable subgroup of \({\text {Aut}}(X)\). In particular, the solvable length of G is 2.

Proposition A.4

The subgroup

$$\begin{aligned} G^0 :={\text {Aut}}^0(X)\cap G = {\text {Ker}}(G \longrightarrow \mathrm {GL}(H^*(X,\mathbb {Q}))) \end{aligned}$$

of G is not finitely generated.

Proof

We define homomorphisms \(\psi :F_2 \rightarrow G\), \(\pi :F_2 \rightarrow M\) and \(j :M \longrightarrow \mathrm {GL}(H^*(X))\) by

$$\begin{aligned} \psi (a)=s,\quad \psi (b)=t, \quad \pi (a)=p, \quad \pi (b)=q, \end{aligned}$$

and

$$\begin{aligned} j(m)=\left( {\text {id}}_{\mathbf {P}_\mathbb {K}^1},m\right) ^*. \end{aligned}$$

Then the morphism \(\psi \) is surjective and j is injective. We consider the diagram

Since the actions of \(A, B \in {\text {Aut}}(\mathbf {P}_\mathbb {K}^1)\) on \(H^*(\mathbf {P}_\mathbb {K}^1)\) are trivial, we have \(\rho \circ \psi = j \circ \pi \). The morphism \(\pi \) will be identified with the abelianization of \(F_2\).

We show that the group \(G^0\) is equal to the image \(\psi (F_2')\) of \(F_2'\) under \(\psi \). Let k be an element of \(G^0\). Using the surjectivity of \(\psi \), we choose an element \(\widetilde{k}\) of \(F_2\) such that \(\psi (\widetilde{k})=k\). Since \((j\circ \pi )(\widetilde{k})=(\rho \circ \psi )(\widetilde{k})=\rho (k)={\text {id}}\), and j is injective, we have

$$\begin{aligned} \widetilde{k} \in {\text {Ker}}(F_2 \xrightarrow {\ \pi \ } M)=F_2'. \end{aligned}$$

Thus we have \(k\in \psi (F_2')\).

We set \(G'=[G,G]\). Since \(\psi \) is surjective, the group \(\psi (F_2')=G^0\) is identified with \(G'\). Thus we have \(G'=G^0\subset {\text {Aut}}(\mathbf {P}_\mathbb {K}^1)\). Also, the image of \(F''_2\) in \(G'\) under the morphism \(\psi \) is trivial. The composite homomorphism

is nothing but the homomorphism \(\varphi '\) defined in (A.1). Therefore, \(G^0 = {\text {Im}}(\varphi ')\) is equal to the group (A.2) by Lemma A.1, which is not finitely generated. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F. A theorem of Tits type for automorphism groups of projective varieties in arbitrary characteristic. Math. Ann. 377, 1573–1602 (2020). https://doi.org/10.1007/s00208-019-01812-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01812-9

Mathematics Subject Classification

Navigation