Skip to main content
Log in

Elliptic Operators with Honeycomb Symmetry: Dirac Points, Edge States and Applications to Photonic Graphene

Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider electromagnetic waves in two-dimensional honeycomb structured media, whose constitutive laws have the symmetries of a hexagonal tiling of the plane. The properties of transverse electric polarized waves are determined by the spectral properties of the elliptic operator \({\mathcal{L}^{A}=-\nabla_{\bf x}\cdot A({\bf x}) \nabla_{\bf x}}\), where A(x) is \({{\Lambda}_h}\)-periodic (\({{\Lambda}_h}\) denotes the equilateral triangular lattice), and such that with respect to some origin of coordinates, A(x) is \({\mathcal{P}\mathcal{C}}\)-invariant (\({A({\bf x})=\overline{A(-{\bf x})}}\)) and \({120^\circ}\) rotationally invariant (\({A(R^*{\bf x})=R^*A({\bf x})R}\), where R is a \({120^\circ}\) rotation in the plane). A summary of our results is as follows: (a) For generic honeycomb structured media, the band structure of \({\mathcal{L}^{A}}\) has Dirac points, i.e. conical intersections between two adjacent Floquet–Bloch dispersion surfaces; (b) Initial data of wave-packet type, which are spectrally concentrated about a Dirac point, give rise to solutions of the time-dependent Maxwell equations whose wave-envelope, on long time scales, is governed by an effective two-dimensional time-dependent system of massless Dirac equations; (c) Dirac points are unstable to arbitrary small perturbations which break either \({\mathcal{C}}\) (complex-conjugation) symmetry or \({\mathcal{P}}\) (inversion) symmetry; (d) The introduction through small and slow variations of a domain wall across a line-defect gives rise to the bifurcation from Dirac points of highly robust (topologically protected) edge states. These are time-harmonic solutions of Maxwell’s equations which are propagating parallel to the line-defect and spatially localized transverse to it. The transverse localization and strong robustness to perturbation of these edge states is rooted in the protected zero mode of a one-dimensional effective Dirac operator with spatially varying mass term; (e) These results imply the existence of unidirectional propagating edge states for two classes of time-reversal invariant media in which \({\mathcal{C}}\) symmetry is broken: magneto-optic media and bi-anisotropic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ablowitz, M.J., Curtis, C.W., Zhu, Y.: On tight-binding approximations in optical lattices. Stud. Appl. Math. 129(4), 362–388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Nixon, S.D., Zhu, Y.: Conical diffraction in honeycomb lattices. Phys. Rev. A 79(5), 053830 (2009)

    Article  ADS  Google Scholar 

  3. Allaire, G., Palombaro, M., Rauch, J.: Diffractive geometric optics for Bloch wave packets. Arch. Rat. Mech. Anal. 202(2), 373–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Piatnitski, A.: Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys. 258(1), 1–22. MR2166838 (2006h:35007) 2005

  5. Ando, Y.: Topological insulator materials. J. Phys. Soc. Jpn. 82(10), 102001 (2013)

    Article  ADS  Google Scholar 

  6. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt, Orlando, FL (1976). (German)

    MATH  Google Scholar 

  7. Avron, J., Simon, B.: Analytic properties of band functions. Ann. Phys. 110, 85–101 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. Berkolaiko, G., Comech, A.: Symmetry and Dirac points in graphene spectrum. J. Spectral Theory 8(3), 1099–1147 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernevig, B.A., Hughes, T.L.: Topological Insulators and Topological Superconductors. Princeton University Press, Princeton (2013)

    Book  MATH  Google Scholar 

  10. Berry, M.V., Jeffrey, M.R.: Conical Diffraction: Hamilton's Diabolical Point at the Heart of Crystal Optics, Progress in optics, 2007

  11. Birman, M.Sh., Suslina, T.A.: Two-dimensional periodic pauli operator. the effective masses at the lower edge of the spectrum. Math. Results Quantum Mech., 13–31 1999

  12. Birman, M.Sh., Suslina, T.A.: Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics. Systems, Approximation, Singular Integral Operators, and Related Topics, 71–107 2001

  13. Birman, M.Sh., Suslina, T.A.: Periodic differential operators of the second order. threshold properties and homogenization. Algebra i Analyz 15(2), 1–108 2003

  14. Birman, MSh, Suslina, T.A.: Homogenization of a multidimensional periodic elliptic operators in a neighborhood of the edge of internal gap. J. Math. Sci. 136(2), 3682–3690 (2006)

    Article  MathSciNet  Google Scholar 

  15. Chen, W.J., Jiang, S.J., Chen, X.D., Zhu, B., Zhou, L., Dong, J.W., Chan, C.T.: Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5 2014

  16. Cheng, X., Jouvaud, C., Ni, X., Mousavi, S.H., Genack, A.Z., Khanikaev, A.B.: Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat, Mater (2016)

  17. Makwana, M., Craster, R.V.: Homogenization for hexagonal lattices and honeycomb structures. Q. J. Mech. Appl, Math (2014)

    MATH  Google Scholar 

  18. Colin De Verdiere, Y.: Sur les singularites de van hove generiques. Memoires de la S. M. F. serie 2 46, 99–109 1991

  19. Delplace, P., Ullmo, D., Montambaux, G.: Zak phase and the existence of edge states in graphene. Phys. Rev. B 84(19), 195452 (2011)

    Article  ADS  Google Scholar 

  20. Dimassi, M., Sjoestrand, J.: Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, 1999

  21. Do, N.T., Kuchment, P.: Quantum graph spectra of a graphyne structure, nanoscale Systems: mathematical modeling. Theory Appl. 2, 107–123 (2013)

    MATH  Google Scholar 

  22. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, London (1973)

    MATH  Google Scholar 

  23. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Topologically protected states in one-dimensional continuous systems and dirac points. Proc. Nat. Acad. Sci. 111(24), 8759–8763 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Bifurcations of edge states—topologically protected and non-protected—in continuous 2d honeycomb structures. 2D Mater. 3(1), 014008 2016

  25. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Topologically protected states in one-dimensional systems. Memoirs Am. Math. Soc. 247(1173), 2017

  26. Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25(4), 1169–1220 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fefferman, C.L., Weinstein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326(1), 251–286 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Edge states in honeycomb structures. Ann. PDE 2(12), 2016

  29. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Honeycomb Schroedinger operators in the strong-binding regime. Commun. Pure Appl. Math. 71(6), 2018

  30. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. I. scalar model. SIAM J. Appl. Math. 56(6), 68–88 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. II. two-dimentional photonic crystals. SIAM J. Appl. Math. 56(6), 1561–1620 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fliss, S., Joly, P.: Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Rat. Mech. Anal. 219(1), 349–386 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fouque, J.-P., Garnier, J., Papanicolaou, G., Solna, K.: Wave Propagation and Time Reversal in Randomly Layered Media, Springer, 2007

  34. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  ADS  Google Scholar 

  35. Gesztesy, F., Latushkin, Y., Zumbrun, K.: Derivatives of (modified) fred-holm determinants and stability of standing and traveling waves. J. Math. Pures Appl. 90, 160–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grushin, V.V.: Multiparameter perturbation theory of Fredholm operators applied to Bloch functions. Math. Notes 86(6), 767–774 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haldane, F.D.M.: Raghu, S: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100(1), 013904 (2008)

    Article  ADS  Google Scholar 

  38. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  39. Hempel, R., Lienau, K.: Spectral properties of periodic media in the large coupling limit. Commun. PDE 25(7–8), 1445–1470 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Hempel, R., Post, O.: Spectral gaps for periodic elliptic operators with high contrast: an overview. Prog Anal 577–587 (2003)

  41. Hoefer, M.A., Weinstein, M.I.: Defect modes and homogenization of periodic schrödinger operators. SIAM J. Math. Anal. 43(2), 971–996 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  43. Keller, R.T., Marzuola, J., Osting, B., Weinstein, M.I.: Spectral Band Degeneracies of \(\frac{\pi }{2}-\) rotationally Invariant Periodic Schrödinger Operators (2018, submitted)

  44. Khanikaev, A.B., Mousavi, S.H., Tse, W.-K., Kargarian, M., MacDonald, A.H., Shvets, G.: Photonic topological insulators. Nat. Mater. 12(3), 233–239 (2013)

    Article  ADS  Google Scholar 

  45. Kuchment, P.: The mathematics of photonic crystals, in ``Mathematical Modeling in Optical Science''. Front. Appl. Math. 22 2001

  46. Kuchment, P., Levendrskii, S.: On the structure of spectra of periodic elliptic operators. Trans. Am. Math. Soc. 354, 537–569 (2001)

    Article  MathSciNet  Google Scholar 

  47. Kuchment, P., Pinchover, Y.: Integral representations and liouville theorems for solutions of periodic elliptic equations. J. Funct. Anal. 181, 402–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kuchment, P., Pinchover, Y.: Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds. Trans. Am. Math. Soc. 359(12), 5777–5815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kuchment, P., Post, O.: On the spectra of carbon nano-structures. Commun. Math. Phys. 275, 805–826 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kuchment, P.A.: Floquet Theory for Partial Differential Equations, vol. 60. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  51. Kuchment, P.A.: An Overview of Periodic Elliptic Operators, . Bull. Amer. Math. Soc. 53, 343–414 (2016)

  52. Lee, M.: Dirac cones for point scatterers on a honeycomb lattice. SIAM J. Math. Anal. 48(2), 1459–1488 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lee-Thorp, J.P., Vukićević, I., Xu, X., Yang, J., Fefferman, C.L., Wong, C.W., Weinstein, M.I.: Photonic realization of topologically protected bound states in domain-wall waveguide arrays. Phys. Rev. A 93, 033822 (2016)

    Article  ADS  Google Scholar 

  54. Lipton, R., Viator, R.: Bloch waves in crystals and periodic high contrast media. ESAIM: Math. Model. Num. Anal. 51(3), 889–918 2017

  55. Lipton, R., Viator, R.: Creating Band Gaps in Periodic Media. Multiscale Model. Simul. 15, 1612–1650 (2017)

  56. Logg, Anders, Mardal, Kent-Andre, Wells, Garth: Automated Solution of Differential Equations by the Finite Element Method: The Fenics Book, Vol. 84, Springer Science & Business Media, 2012

  57. Ma, T., Khanikaev, A.B., Mousavi, S.H., Shvets, G.: Guiding electromagnetic waves around sharp corners: Topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114(12), 127401 (2015)

    Article  ADS  Google Scholar 

  58. Mackay, T.G.: Lakhtakia, A: Electromagnetic Anisotropy and Bian-isotropy: A Field Guide. World Scientific, Singapore (2010)

    Google Scholar 

  59. Mousavi, S.H., Khanikaev, A.B., Wang, Z.: Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 6 2015

  60. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  61. Newton, R.G.: Relation between the three-dimensional Fredholm determinant and the Jost functions. J. Math. Phys. 13(2), 880–883 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  62. De Nittis, G., Lein, M.: Effective light dynamics in perturbed photonic crystals. Commun. Math. Phys. 332(1), 221–260 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. De Nittis, G., Lein, M.: On the role of symmetries in the theory of photonic crystals. Ann. Phys. 350, 568–587 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. De Nittis, G., Lein, M.: Derivation of ray optics equations in photonic crystals via a semi-classical limit. Ann. Henri. Poincare 18(5), 1789–1831 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. De Nittis, G., Lein, M.: Symmetry Classification of Topological Photonic Crystals, (arXiv:1710.08104)

  66. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  ADS  Google Scholar 

  67. Ortmann, F., Roche, S., Valenzuela, S.O.: Topological Insulators: Fundamentals and Perspectives. Wiley, Weinheim (2015)

    Google Scholar 

  68. Peleg, O., Bartal, G., Freedman, B., Manela, O., Segev, M., Christodoulides, D.N.: Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007)

    Article  ADS  Google Scholar 

  69. Plotnik, Y., Rechtsman, M.C., Song, D., Heinrich, M., Zeuner, J.M., Nolte, S., Lumer, Y., Malkova, N., Xu, J., Szameit, A., Chen, Z., Segev, M.: Observation of unconventional edge states in 'photonic graphene'. Nat. Mater. 13(1), 57–62 (2014)

    Article  ADS  Google Scholar 

  70. Poo, Y., Lee-Thorp, J.P., Tan, Y., Wu, R., Weinstein, M.I., Yu, Z.: Observation of highly robust phase-defect induced photonic states, Lasers and electro-optics (cleo). Conference on 2016, 1–2 (2016)

    Google Scholar 

  71. Poo, Y., Lee-Thorp, J.P., Tan, Y., Wu, R., Weinstein, M.I., Yu, Z.: Global Phase-Modulated Defect States, in preparation

  72. Poo, Y., Wu, R., Lin, Z., Yang, Y., Chan, C.T.: Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106(9), 093903 (2011)

    Article  ADS  Google Scholar 

  73. Raghu, S., Haldane, F.D.M.: Analogs of quantum-hall-effect edge states in photonic crystals. Phys. Rev. A 78(3), 033834 (2008)

    Article  ADS  Google Scholar 

  74. Rechtsman, M.C., Plotnik, Y., Zeuner, J.M., Song, D., Chen, Z., Szameit, A., Segev, M.: Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111(10), 103901 (2013)

    Article  ADS  Google Scholar 

  75. Reed, M., Simon, B.: Analysis of Operators, vol. iv of Methods of Modern Mathematical Physics, Academic Press, New York 1978

  76. Simon, B.: Trace Ideals and Their Applications, Second Edition, Mathematical Surveys and Monographs, vol. 120, AMS, 2005

  77. Singha, A., Gibertini, M., Karmakar, B., Yuan, S., Polini, M., Vignale, G., Katsnelson, M.I., Pinczuk, A., Pfeiffer, L.N., West, K.W., Pellegrini, V.: Two-dimensional mott-hubbard electrons in an artificial honeycomb lattice. Science 332(6034), 1176–1179 (2011)

    Article  ADS  Google Scholar 

  78. Suslina, T.A.: On averaging of a periodic Maxwell system. Funct. Anal. Appl. 38(234–237), 2004

  79. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622 (1947)

    Article  ADS  MATH  Google Scholar 

  80. Wang, Z., Chong, Y.D., Joannopoulos, J.D.: Solja\(\check{{\rm c}}\)ić, M.: Reflection-free oneway edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2008)

    Article  ADS  Google Scholar 

  81. Wu, L.-H., Hu, X.: Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114(22), 223901 (2015)

    Article  ADS  Google Scholar 

  82. Yang, Z., Gao, F., Shi, X., Lin, X., Gao, Z., Chong, Y., Zhang, B.: Topological acoustics. Phys. Rev. Lett. 114(11), 114301 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. L. Fefferman, L. Lu, M. Rechtsman, D. Ketcheson, V. Quenneville-Bélair and N. Yu for stimulating discussions. This research was supported in part by NSF grants: DMS-1412560, DMS-1620418, DGE-1069420 and Simons Foundation Math + X Investigator grant #376319 (MIW); and the NSF grant DMR-1420073 (JPL-T). YZ acknowledges the hospitality of the Department of Applied Physics and Applied Mathematics during academic visits to Columbia University, supported by Tsinghua University Initiative Scientific Research Program # 20151080424 and NSFCgrants #11471185 and #11871299.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Weinstein.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee-Thorp, J.P., Weinstein, M.I. & Zhu, Y. Elliptic Operators with Honeycomb Symmetry: Dirac Points, Edge States and Applications to Photonic Graphene. Arch Rational Mech Anal 232, 1–63 (2019). https://doi.org/10.1007/s00205-018-1315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1315-4

Navigation