Skip to main content
Log in

Nonconvex Model of Material Growth: Mathematical Theory

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alford, P., Humphrey, J., Taber, L.: Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech. Model. Mech. 7, 245–262 (2008)

    Article  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in Spaces of Probability Measures. Birkhäuser, Basel-Boston-Berlin (2005)

    MATH  Google Scholar 

  3. Ambrosi, D., Ateshian, G.A., Arruda, E.M., Ben Amar, M., Cowin, S.C., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E., Ma, J., Olberding, J.E., Taber, L.A., Vandiver, R., Garikipati, R.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59, 863–883 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ambrosi, D., Mollica, F.: The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48, 477–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12, 319–342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyard, N. (ed.): Heat Transfer in Polymer Composite Matertial. Forming Processes, Wiley, New York (2016)

    Google Scholar 

  8. Ciarlet, P.: Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity. Elsevier Science Publishers, Basel, 1988

  9. Ciarletta, P., Ambrosi, D., Maugin, G.A.: Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling. J. Mech. Phys. Solids 60, 432–450 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Cowin, S.C.: Tissue growth and remodeling. Annu. Rev. Biomed. Eng. 6, 77–107 (2004)

    Article  Google Scholar 

  11. Di Carlo, A., Quiligotti, S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Epstein, M., Maugin, G.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)

    Article  MATH  Google Scholar 

  13. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. A 244, 87–112 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Falk, F.: Elastic phase transitions and nonconvex energy function. In: Free Boundary Problems: Theory and Applications, Pitman Research Notes in Mathematics Series, 158, 49–50. Harlow, Longman, 1990

  15. Fung, Y.C.: Stress, strain, growth, and remodeling of living organisms. Z. Angew. Math. Phys. 46, 469–482 (1995)

    MATH  Google Scholar 

  16. Fleck, N.A., Hutchinson, J.W.: Strain gradient placticity. Adv. Appl. Mech. 33, 296–361 (1997)

    Google Scholar 

  17. Ganghoffer, J.F., Plotnikov, P.I., Sokolowski, J.: Mathematical modeling of volumetric material growth in thermoelasticity. J. Elast. 117, 111–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ganghoffer, J.F., Plotnikov, P.I., Sokolowski, J.: Mathematical modeling of volumetric material growth. Arch. Appl. Mech. 84, 1357–1371 (2014)

    Article  ADS  MATH  Google Scholar 

  19. Ganghoffer, J.F.: On Eshelby tensors in the context of open systems: application to volumetric growth. Int. J. Eng. Sci. https://doi.org/10.1016/j.ijengsci.2010.04.003.

  20. Ganghoffer, J.F.: Mechanical modeling of growth considering domain variation—part II: volumetric and surface growth involving Eshelby tensors. J. Mech. Phys. Solids (2011). https://doi.org/10.1016/j/jmps/2010.05.003.

  21. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, Vol. 224. Springer, Berlin-New York, 1977

  22. Goriely, A., Ben Amar, M.: On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech. Model. Mech. 6, 289–296 (2007)

    Article  Google Scholar 

  23. Hsu, F.-H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1, 303–311 (1968)

    Article  Google Scholar 

  24. Jones, G.W., Chapman, S.J.: Modeling growth in biological materials. SIAM Rev. 54, 52–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kato, T.: Perturbation Theory for Linear Operators. Reprint of the: edition, p. 1995. Classics in Mathematics, Springer, Berlin (1980)

    Google Scholar 

  26. Klisch, S.M., Van Dyke, T.J., Hoger, A.: A theory of volumetric growth for compressible elastic biological materials. Math. Mech. Solids 6, 551–575 (2001)

    Article  MATH  Google Scholar 

  27. Koiter, W.T.: Couple stresses in the theory of elasticity I and II. Proc. K. Ned. Akademy Wet. (B) 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  28. Kuhl, E., Maas, R., Himpel, G., Menzel, A.: Computational modeling of arterial wall growth. Biomech. Model. Mechanobiol. 6, 321–331 (2007)

    Article  Google Scholar 

  29. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)

    Article  MATH  Google Scholar 

  30. Menzel, A., Kuhl, E.: Frontiers in growth and remodeling. Mech. Res. Commun. 42, 1–14 (2012)

    Article  Google Scholar 

  31. Menzel, A.: A fibre reorientation model for orthotropic multiplicative growth. Biomech. Model. Mechanobiol. 6, 303–320 (2007)

    Article  Google Scholar 

  32. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solid Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  33. Olsson, T., Klarbring, A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech. A Solids 27, 959–974 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Pawłow, I., \({\dot{\text{Z}}}\)ochowski, A.: Existence and uniqueness of solutions for a three-dimensional thermoelastic system. Dissert. Math., 406, 1–46 (2002)

  35. Rodriguez, E., Hoger, A., McCulloch, A.: Stress-dependent finite growth law in soft elastic tissue. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  36. Rodriguez, J., Goicolea, J., Gabaldón, F.: A volumetric model for growth of arterial walls with arbitrary geometry and loads. J. Biomech. 40, 961–971 (2007)

    Article  Google Scholar 

  37. Rodriguez, J., Goicolea, J., Garcia, J., Gabaldon, F.: Finite element models for mechanical simulation of coronary arteries, in Functional Imaging and Modeling of the Heart. Lecture Notes in Comput. Sci., Vol. 2674, Springer, Berlin, Heidelberg, 295–305, 2003

  38. Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94, 555–577 (1982)

    Article  MathSciNet  Google Scholar 

  39. Simon, J.: Compact sets in \(L^p(0, T; B)\). Annali di Matematica pura et applicata 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  40. Sprekels, J., Zheng, S.: Global solutions to the equations of a Ginsburg-Landau Theory for structural phase transitions in shape memory allows. Physica D 39, 59–76 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Taber, L.A.: Biomechanics of growth, remodeling and morphogenesis. Appl. Mech. Rev. 48, 487–545 (1995)

    Article  ADS  Google Scholar 

  42. Taber, L., Eggers, D.: Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180, 343–357 (1996)

    Article  Google Scholar 

  43. Taber, L.: A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng. 120, 348–354 (1998)

    Article  Google Scholar 

  44. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vignes, C., Papadopoulos, P.: Material growth in thermoelastic continua: theory, algorithmics, and simulation. Comput. Methods Appl. Mech. Eng. 199, 979–996 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Plotnikov.

Additional information

Communicated by G. Dal Maso

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganghoffer, J.F., Plotnikov, P.I. & Sokolowski, J. Nonconvex Model of Material Growth: Mathematical Theory. Arch Rational Mech Anal 230, 839–910 (2018). https://doi.org/10.1007/s00205-018-1259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1259-8

Navigation