Skip to main content
Log in

Abstract

In the present paper we study stochastic homogenization for reaction–diffusion equations with stationary ergodic reactions (including periodic). We first show that under suitable hypotheses, initially localized solutions to the PDE asymptotically become approximate characteristic functions of a ballistically expanding Wulff shape. The next crucial component is the proper definition of relevant front speeds and the subsequent establishment of their existence. We achieve the latter by finding a new relation between the front speeds and the Wulff shape, provided the Wulff shape does not have corners. Once front speeds are proved to exist in all directions, by the above means or otherwise, we are able to obtain general stochastic homogenization results, showing that large space–time evolution of solutions to the PDE is governed by a simple deterministic Hamilton–Jacobi equation whose Hamiltonian is given by these front speeds. Our results are new even for periodic reactions, particularly of ignition type. We primarily consider the case of non-negative reactions but we also extend our results to the more general PDE \({u_{t}= F(D^2 u,\nabla u,u,x,\omega)}\), as long as its solutions satisfy some basic hypotheses including positive lower and upper bounds on spreading speeds in all directions and a sub-ballistic bound on the width of the transition zone between the two equilibria of the PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alfaro, M., Giletti, T.: Asymptotic analysis of a monostable equation in periodic media. Tamkang J. Math. 47(1), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions. J. Eur. Math. Soc. (JEMS) 20(4), 797–864 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armstrong, S.N., Souganidis, P.E.: Stochastic homogenization of level-set convex Hamilton-Jacobi equations. Int. Math. Res. Not. IMRN 15, 3420–3449 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armstrong, S.N., Tran, H.V.: Stochastic homogenization of viscous Hamilton-Jacobi equations and applications. Anal. PDE 7(8), 1969–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of a nonconvex Hamilton-Jacobi equation. Calc. Var. Partial Differential Equations 54(2), 1507–1524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Armstrong, S.N., Tran, H.V., Yu, Y.: Stochastic homogenization of nonconvex Hamilton-Jacobi equations in one space dimension. J. Differential Equations 261(5), 2702–2737 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math. 30(1), 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auffinger, A., Damron, M., Hanson, J.: 50 years of first-passage percolation, University Lecture Series, vol. 68. American Mathematical Society, Providence, RI (2017)

    Book  MATH  Google Scholar 

  9. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia

  10. Bardi, M., Evans, L.C.: On Hopf's formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal. 8(11), 1373–1381 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barles, G., Perthame, B.: Discontinuous solutions of deterministic optimal stopping time problems. RAIRO Modél. Math. Anal. Numér. 21(4), 557–579 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barles, G., Perthame, B.: Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26(5), 1133–1148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barles, G., Soner, H.M., Souganidis, P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31(2), 439–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barles, G., Souganidis, P.E.: A new approach to front propagation problems: theory and applications. Arch. Rational Mech. Anal. 141(3), 237–296 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Becker, M.E.: Multiparameter groups of measure-preserving transformations: a simple proof of Wiener's ergodic theorem. Ann. Probab. 9(3), 504–509 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berestycki, H., Nadin, G.: Spreading speeds for one-dimensional monostable reaction-diffusion equations. J. Math. Phys. 53(11), 115619, 23, 2012

  18. Caffarelli, L.A., Lee, K.-A., Mellet, A.: Homogenization and flame propagation in periodic excitable media: the asymptotic speed of propagation. Commun. Pure Appl. Math. 59(4), 501–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cardaliaguet, P., Souganidis, P.E.: On the existence of correctors for the stochastic homogenization of viscous Hamilton-Jacobi equations. C. R. Math. Acad. Sci. Paris 355(7), 786–794 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crandall, M.G., Ishii, H., Lions, P.-L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davini, A., Kosygina, E.: Homogenization of viscous and non-viscous HJ equations: a remark and an application. Calc. Var. Partial Differ. Equ. 56(4), Art. 95, 21 (2017)

    MATH  Google Scholar 

  22. Davini, A., Siconolfi, A.: Metric techniques for convex stationary ergodic Hamiltonians. Calc. Var. Partial Differ. Equ. 40(3–4), 391–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinb. Sect. A 120(3–4), 245–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feldman, W.M., Souganidis, P.E.: Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 108(5), 751–782 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fisher, R.A.: The advance of advantageous genes. Ann. Eugen 7, 335–361 (1937)

    MATH  Google Scholar 

  26. Freidlin, M.: Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, vol. 109. Princeton University Press, Princeton, NJ (1985)

    Google Scholar 

  27. Freidlin, M.I.: On Wavefront Propagation in Periodic Media, Stochastic Analysis and Applications. Advanced Probability and Related Topics, vol. 7, pp. 147–166., Dekker, New York (1984)

  28. Gao, H.: Stochastic homogenization of certain nonconvex Hamilton–Jacobi equations. arXiv:1803.08633

  29. Gao, H.: Random homogenization of coercive Hamilton-Jacobi equations in 1d. Calc. Var. Partial Differ. Equ. 55(2), Art. 30, 39 (2016)

    MATH  Google Scholar 

  30. Gartner, J., Freĭdlin, M.I.: The propagation of concentration waves in periodic and random media. Dokl. Akad. Nauk SSSR 249(3), 521–525 (1979)

    MathSciNet  Google Scholar 

  31. Kesten, H.: Percolation theory and first-passage percolation. Ann. Probab. 15(4), 1231–1271 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kesten, H.: First-passage percolation. From Classical to Modern Probability. Progress in Probability, vol. 54, pp. 93–143. Birkhäuser, Basel (2003)

    Book  Google Scholar 

  33. Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. R. Stat. Soc. Ser. B 30, 499–510 (1968)

    MathSciNet  MATH  Google Scholar 

  34. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Etude de l'equation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Moskow Univ. Math. Bull. 1, 1–25 (1937)

    Google Scholar 

  35. Kosygnia, E., Yilmaz, A., Zeitouni, O.: Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential. arXiv:1710.03087, [math.AP] (2017)

  36. Lin, J., Zlatoš, A.: Stochastic homogenization for Fisher-KPP reaction–diffusion equations. in preparation

  37. Lions, P.-L., Souganidis, P.E.: Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media. Commun. Partial Differ. Equ. 30(1–3), 335–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Majda, A.J., Souganidis, P.E.: Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7(1), 1–30 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Nadin, G.L.: Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(4), 841–873 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 1021–1047 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Nolen, J., Xin, J.: Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 815–839 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Osher, S., Merriman, B.: The Wulff shape as the asymptotic limit of a growing crystalline interface. Asian J. Math. 1(3), 560–571 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Qian, J., Tran, H.V., Yu, Y.: Min-max formulas and other properties of certain classes of nonconvex effective Hamiltonians. Math. Ann. 372(1–2), 91–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Richards, G.D.: An elliptical growth model of forest fire fronts and its numerical solution. Int. J. Numer. Methods Eng. 30(6), 1163–1179 (1990)

    Article  MATH  Google Scholar 

  45. Rossi, L.: The Freidlin-Gärtner formula for general reaction terms. Adv. Math. 317, 267–298 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Soravia, P.: Generalized motion of a front propagating along its normal direction: a differential games approach. Nonlinear Anal. 22(10), 1247–1262 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Souganidis, P.E.: Front Propagation: Theory and Applications, Viscosity Solutions and Applications (Montecatini Terme, 1995). Lecture Notes in Mathematics, vol. 1660, pp. 186–242. Springer, Berlin, 1997

  48. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45(6), 511–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xin, J.X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Rational Mech. Anal. 121(3), 205–233 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ziliotto, B.: Stochastic homogenization of nonconvex Hamilton-Jacobi equations: a counterexample. Commun. Pure Appl. Math. 70(9), 1798–1809 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zlatoš, A.: Stochastic homogenization for isotropic Hamilton–Jacobi equations. (in preparation)

  52. Zlatoš, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208(2), 447–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7), 1687–1705 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zlatoš, A.: Propagation of reactions in inhomogeneous media. Commun. Pure Appl. Math. 70(5), 884–949 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Mark Freidlin, Antoine Mellet, Panagiotis Souganidis, and Jack Xin for valuable discussions. AZ was supported in part by NSF Grants DMS-1652284 and DMS-1656269. JL was supported in part by NSF Grants DMS-1147523 and DMS-1700028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Lin.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zlatoš, A. Stochastic Homogenization for Reaction–Diffusion Equations. Arch Rational Mech Anal 232, 813–871 (2019). https://doi.org/10.1007/s00205-018-01334-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01334-9

Navigation