Skip to main content
Log in

Abstract

We study the beach problem for water waves. The case we consider is a compact fluid domain, where the free surface intersects the bottom along an edge, with a non-zero contact angle. Using elliptic estimates in domains with edges and a new equation on the Taylor coefficient, we establish a priori estimates for angles smaller than a dimensional constant. Local existence will be derived in a following paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the water-wave equations with surface tension. Duke Math. J. 158(3), 413–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198(1), 71–163 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alazard, T., Burq, N., Zuily, C.: Cauchy theory for the gravity water waves system with non-localized initial data. Ann. Inst. Henri Poincaré. Anal. Non Linéaire 33(2), 337–395 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Beyer, K., Günther, M.: On the Cauchy problem for a capillary drop. I. Irrotational motion. Math. Methods Appl. Sci. 21(12), 1149–1183 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Castro, A., Lannes, D.: Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity. Indiana Univ. Math. J. 64(4), 1169–1270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cauchy, A.: Mémoire sur la théorie de la propagation des ondes à la surface d'un fluide pesant d'une profondeur indéfinie, in ''mémoires présentés par divers savants à l'académie royale des sciences de l'institut de france''. Sci. Math. Phys. 130 (1827)

  7. Christodoulou, D., Lindblad, H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53(12), 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutand, D., Shkoller, S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20(3), 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, vol. 1341. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Vol. 24 of Monographs and Studies in Mathematics Pitman (Advanced Publishing Program), Boston, 1985

  11. Guo, Y., Tice, I.: Stability of contact lines in fluids: 2d stokes flow. Arch. Ration. Mech. Anal. 227(2), 767–854 (2018). https://doi.org/10.1007/s00205-017-1174-4

  12. Hunter, J.K., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates. Commun. Math. Phys. 346(2), 483–552 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kinsey, R.H., Wu, S.: A priori estimates for two-dimensional water waves with angled crests. Camb. J. Math. 6(2), 93–181 (2018). https://doi.org/10.4310/CJM.2018.v6.n2.a1

  14. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lannes, D. The Water Waves Problem: Mathematical Analysis and Asymptotics, Vol. 188 of Mathematical Surveys and Monographs American Mathematical Society, Providence, 2013

  16. Ming, M., Wang, C.: Elliptic estimates for the Dirichlet–Neumann operator on a corner domain. Asymptot. Anal. 104(3–4), 103–166 (2017). https://doi.org/10.3233/ASY-171427

  17. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Shatah, J., Zeng, C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61(5), 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shatah, J., Zeng, C.: A priori estimates for fluid interface problems. Commun. Pure Appl. Math. 61(6), 848–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shatah, J., Zeng, C.: Local well-posedness for fluid interface problems. Arch. Ration. Mech. Anal. 199(2), 653–705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-d. Invent. Math. 130(1), 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12(2), 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, S.: A blow-up criteria and the existence of 2d gravity water waves with angled crests (2015). arXiv preprint arXiv:1502.05342

  24. Zheng, Y., Tice, I.: Local well posedness of the near-equilibrium contact line problem in 2-dimensional Stokes flow. SIAM J. Math. Anal. 49(2), 899–953 (2017). https://doi.org/10.1137/16M1095238

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault de Poyferré.

Additional information

Communicated by N. Masmoudi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Poyferré, T. A Priori Estimates for Water Waves with Emerging Bottom. Arch Rational Mech Anal 232, 763–812 (2019). https://doi.org/10.1007/s00205-018-01333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01333-w

Navigation