Skip to main content
Log in

Maslov-Type Indices and Linear Stability of Elliptic Euler Solutions of the Three-Body Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we use the central configuration coordinate decomposition to study the linearized Hamiltonian system near the 3-body elliptic Euler solutions. Then using the Maslov-type \({\omega}\)-index theory of symplectic paths and the theory of linear operators we compute the \({\omega}\)-indices and obtain certain properties of linear stability of the Euler elliptic solutions of the classical three-body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danby J.: The stability of the triangular Lagrangian point in the general problem of three bodies. Astron. J. 69, 294–296 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. Euler L.: De motu restilineo trium corporum se mutus attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

    Google Scholar 

  3. Gascheau M.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. 16, 393–394 (1843)

    Google Scholar 

  4. Hu X., Long Y., Sun S.: Linear stability of elliptic Lagrange solutions of the classical planar three-body problem via index theory. Arch. Ration. Mech. Anal. 213, 993–1045 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu X., Ou Y.: An estimate for the hyperbolic region of elliptic Lagrangian solutions in the planar three-body problem. Regul. Chaotic Dyn. 18(6), 732–741 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hu X., Ou Y.: Collision index and stability of elliptic relative equilibria in planar n-body problem. Commun. Math. Phys. 348, 803–845 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hu, X., Sun, S.: Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit. Commun. Math. Phys. 290, 737–777, 2009

  8. Hu X., Sun S.: Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv. Math. 223, 98–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobson, N.: Basic Algebra I. W. H. Freeman and Com., 1974

  10. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin, 1984

  11. Long, Y., Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci. China Ser. A 7, 673–682, 1990. (Chinese Ed.). Ser. A. 33, 1409–1419, 1990. (English Ed.)

  12. Long Y.: Bott formula of the Maslov-type index theory. Pac. J. Math. 187, 113–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Long Y.: Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics. Adv. Math. 154, 76–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Long, Y.: Index theory for symplectic paths with applications. In: Progress in Mathemtics 207, Birkhäuser, Basel, 2002

  15. Long, Y.: Lectures on Celestial Mechanics and Variational Methods, 2012

  16. Martínez R., Samà A.: On the centre mabifold of collinear points in the planar three-body problem. Celest. Mech. Dyn. Astron. 85, 311–340 (2003)

    Article  ADS  MATH  Google Scholar 

  17. Martínez, R., Samà, A., Simó, C.: Stability of homograpgic solutions of the planar three-body problem with homogeneous potentials. In: International Conference on Differential Equations. Hasselt, 2003, (Eds. Dumortier, Broer, Mawhin, Vanderbauwhede and Lunel) World Scientific, 1005–1010, 2004

  18. Martínez R., Samà A., Simó C.: Stability diagram for 4D linear periodic systems with applications to homographic solutions. J. Differ. Equ. 226, 619–651 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Martínez R., Samà A., Simó C.: Analysis of the stability of a family of singular-limit linear periodic systems in \({\mathbf{R}^4}\). Applications. J. Differ. Equ. 226, 652–686 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer K., Schmidt D.L.: Elliptic relative equilibria in the N-body problem. J. Differ. Equ. 214, 256–298 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Roberts G.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. J. Differ. Equ. 182, 191–218 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Routh E.: On Laplace’s three particles with a supplement on the stability or their motion. Proc. Lond. Math. Soc. 6, 86–97 (1875)

    MATH  Google Scholar 

  23. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton, NJ, 1941, 2nd print, Princeton Mathematical Series 5, 215, 1947

  24. Zhou, Q., Long, Y.: Maslov-type indices and linear stability of elliptic Euler solutions of the three-body problem, 2015. http://arxiv.org/abs/1510.06822.pdf

  25. Zhou Q., Long Y.: The reduction on the linear stability of elliptic Euler-Moulton solutions of the n-body problem to those of 3-body problems. Celest. Mech. Dyn. Astron. 127, 397–428 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong Zhou.

Additional information

Communicated by P. Rabinowitz

Qinglong Zhou: Partially supported by NSFC (Nos. 11501330, 11425105) and CPSF (No. 2015M582071) of China.

Yiming Long: Partially supported by NSFC (Nos. 11131004, 11671215), LPMC of MOE of China, Nankai University, and BAICIT at Capital Normal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Long, Y. Maslov-Type Indices and Linear Stability of Elliptic Euler Solutions of the Three-Body Problem. Arch Rational Mech Anal 226, 1249–1301 (2017). https://doi.org/10.1007/s00205-017-1154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1154-8

Navigation