Skip to main content
Log in

Fluids, Elasticity, Geometry, and the Existence of Wrinkled Solutions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We are concerned with underlying connections between fluids, elasticity, isometric embedding of Riemannian manifolds, and the existence of wrinkled solutions of the associated nonlinear partial differential equations. In this paper, we develop such connections for the case of two spatial dimensions, and demonstrate that the continuum mechanical equations can be mapped into a corresponding geometric framework and the inherent direct application of the theory of isometric embeddings and the Gauss–Codazzi equations through examples for the Euler equations for fluids and the Euler–Lagrange equations for elastic solids. These results show that the geometric theory provides an avenue for addressing the admissibility criteria for nonlinear conservation laws in continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, Cambridge 2006

  2. Acharya, A., Fressengeas, C.: Continuum mechanics of the interaction of phase boundaries and dislocations in solids. Differential Geometry and Continuum Mechanics, Vol. 137, Springer Proceedings in Mathematics and Statistics (Eds. Chen G-Q., et al.), 123–165, 2015

  3. Ambrosi D., Ateshian G.A., Arruda E.M., Cowin S.C., Dumais J., Goriely A., Holzapfel G.A., Humphrey J.D., Kemkemer R., Kuhl E., Olberding J.E., Taber L.A., Garikipati K.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids, 59, 863–883 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ball J.M., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardos C.W., Titi E.S., Wiedemann E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. C. R. Math. Acad. Sci. Paris, 350, 757–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardos C.W., Titi E.S.: Mathematics and turbulence: where do we stand?. J. Turbul. 14, 42–76 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bardos C.W., Lopes Filho M.C., Niu D., Nussenzveig Lopes H.J., Titi E.S.: Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking. SIAM J. Math. Anal. 45, 1871–1885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartnik, R., Isenberg, J.: The constraint equations. The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel, 1–38, 2004

  9. Borisov J.F.: The parallel translation on a smooth surface. I. Vestnik Leningrad. Univ. 13(7), 160–171 (1958)

    MathSciNet  MATH  Google Scholar 

  10. Borisov J.F.: The parallel translation on a smooth surface. II. Vestnik Leningrad. Univ. 13(19), 45–54 (1958)

    MathSciNet  MATH  Google Scholar 

  11. Borisov J.F.: On the connection between the spatial form of smooth surfaces and their intrinsic geometry. Vestnik Leningrad. Univ. 14(13), 20–26 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Borisov J.F.: The parallel translation on a smooth surface. III. Vestnik Leningrad. Univ. 14(1), 34–50 (1959)

    MathSciNet  Google Scholar 

  13. Borisov J.F.: On the question of parallel displacement on a smooth surface and the connection of space forms of smooth surfaces with their intrinsic geometries. Vestnik Leningrad. Univ. 15(19), 127–129 (1960)

    MathSciNet  Google Scholar 

  14. Borisov, J.F.: C 1,α-isometric immersions of Riemannian spaces. Doklady, 163, 869–871, 1965

  15. Borisov Y.: Irregular C 1,β-surfaces with analytic metric. Sib. Mat. Zh. 45(1), 25–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B.: Flat tori in three-dimensional space and convex integration. Proc. Natl. Acad. Sci. USA, 109, 19 (2012), 7218-7223

  17. Borrelli V., Jabrane S., Lazarus F., Thibert B.: Isometric embeddings of the square flat torus in ambient space. Ensaios Matemáticos, 24, 1–91 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr. L.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. (2), 182, 127–172, 2015

  19. Buckmaster, T., De Lellis, C., Székelyhidi Jr. L.: Transporting microstructure and dissipative Euler flows, 2013. arXiv:1302.2815 [math.AP]

  20. Chen G.-Q., Slemrod M., Wang D.: Isometric immersions and compensated compactness. Commun. Math. Phys. 294, 411–437 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chen G.-Q., Glimm J.: Kolmogorov’s theory of turbulence and inviscid limit of the Navier–Stokes equations in R 3. Commun. Math. Phys. 310, 267–283 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Chiodaroli E., De Lellis C., Kreml O.: Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68, 1157–1190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chiodaroli, E.: A counterexample to well-posedeness of entropy solutions to the compressible Euler system, 2011. arXiv:1201.3470 [math.AP]

  24. Conti, S., De Lellis, C., Székelyhidi Jr. L.: h-principle and rigidity for C 1,α isometric embeddings. Nonlinear Partial Differential Equations, Abel Symp. Vol. 7, Springer, Heidelberg, 83–116, 2012

  25. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Berlin, 2010

  26. Daneri, S.: Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, 2013. arXiv:1302.0988 [math.AP]

  27. De Lellis, C.: The masterpieces of John Forbes Nash, Jr., ArXiv preprint (2016). 1606.02551

  28. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. (2), 170, 1417–1436, 2009

  29. De Lellis C., Székelyhidi L. Jr: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. De Lellis C., Székelyhidi L. Jr: The h-principle and the equations of fluid dynamics. Bull. Am. Math. Soc. (N.S.), 49, 347–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. De Lellis C., Székelyhidi L. Jr: Dissipative continuous Euler flows. Invent. Math. 193, 377–407 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. De Lellis C., Székelyhidi L. Jr: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS), 16, 1467–1505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Lellis C., Székelyhidi L. Jr: On h-principle and Onsager’s conjecture. Eur. Math. Soc. Newsl. 95, 19–24 (2015)

    MathSciNet  MATH  Google Scholar 

  34. DeTurck, D., Yang, D.: Local existence of smooth metrics with prescribed curvature. Nonlinear Problems in Geometry (Mobile, Ala., 1985), Contemp. Math. Vol. 51, AMS, Providence, RI, 37–43, 1986

  35. do Carmo, M.P.: Riemannian Geometry. Translated from the 2nd Portuguese Edition by Francis Flaherty. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992

  36. Efrati E., Sharon E., Kupferman R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids, 57, 762–775 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Elling V.: Algebraic spiral solutions of 2D incompressible Euler. J. Diff. Eqs. 255, 3749–3787 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Elling V.: A possible counterexample to well posedness of entropy solutions and to Godunov scheme convergence. Math. Comp. 75, 1721–1733 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gromov, M.: Partial Differential Relations. Springer, Berlin, 1986

  40. Günther M.: Zum Einbettungssatz von J. Nash, Math. Nachr., 144, 165–187 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Han, Q., Hong, J.-X.: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. Mathematical Surveys and Monographs, Vol. 130. AMS, Providence, RI, 2006

  42. Jin, L., Cai, S., Suo, Z.: Creases in soft tissues generated by growth. Europhys. Lett., 95, 64002, 2011

  43. Klainerman S., Rodnianski I.: Rough solutions of the Einstein-vacuum equations. Ann. Math. 161(3), 1143–1193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuiper, N.H.: On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556, Indag. Math. 17, 683–689, 1955

  45. Mardare S.: On isometric immersions of a Riemannian space with little regularity. Anal. Appl. (Singap.), 2, 193–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mardare S.: On the fundamental theorem of surface theory under weak regularity assumptions. C. R. Math. Acad. Sci. Paris, 338, 71–76 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mardare S.: The fundamental theory of surface theory with little regularity. J. Elasticity, 73, 251–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nash, J.: C 1 isometric imbeddings. Ann. Math. (2), 60, 383–396, 1954

  49. Nash J.: The imbedding problem for Riemannian manifolds, Ann. Math. 95, 191–225 (1972)

    Article  MathSciNet  Google Scholar 

  50. Rom-Kedar V., Leonard A., Wiggins S.: An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–394 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Slemrod, M.: Admissibility of weak solutions for the compressible Euler equations, \({n\geqq 2}\). Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371, no. 2005, 20120351, 11 pp., 2013

  52. Slemrod, M.: Lectures on the isometric embedding problem \({(M^n, g) \rightarrow \mathbb{R}^m, m = \frac{n}{2} (n + 1)}\). Differential Geometry and Continuum Mechanics (Chen G-Q., et al. eds.). Springer, Cham, 2015, 77–120

  53. Székelyhidi L. Jr: Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Math. Acad. Sci. Paris, 349, 1063–1066 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Waleffe F.: Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15, 1517–1534 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wiedemann E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. H. Poincare Anal. Non Lineaire, 28(5), 727–730 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Zhang X., Acharya A., Walkington N.J., Bielak J.: A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations. J. Mech. Phys. Solids, 84, 145–195 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang G. Chen.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, A., Chen, GQ.G., Li, S. et al. Fluids, Elasticity, Geometry, and the Existence of Wrinkled Solutions. Arch Rational Mech Anal 226, 1009–1060 (2017). https://doi.org/10.1007/s00205-017-1149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1149-5

Navigation