Skip to main content
Log in

Traveling Waves for Nonlinear Schrödinger Equations with Nonzero Conditions at Infinity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of nontrivial finite energy traveling waves for a large class of nonlinear Schrödinger equations with nonzero conditions at infinity (includindg the Gross–Pitaevskii and the so-called “cubic-quintic” equations) in space dimension \({ N \geq 2}\). We show that minimization of the energy at fixed momentum can be used whenever the associated nonlinear potential is nonnegative and it gives a set of orbitally stable traveling waves, while minimization of the action at constant kinetic energy can be used in all cases. We also explore the relationship between the families of traveling waves obtained by different methods and we prove a sharp nonexistence result for traveling waves with small energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abid M., Huepe C., Metens S., Nore C., Pham C. T., Tuckerman L. S., Brachet M. E.: Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res., 33(5–6), 509–544 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Almeida L., Béthuel F.: Topological methods for the Ginzburg–Landau equations. J. Math. Pures Appl. (9) 77(1), 149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barashenkov I. V., Gocheva A. D., Makhankov V. G., Puzynin I. V.: Stability of soliton-like bubbles. Phys. D 34, 240–254 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barashenkov I. V., Makhankov V. G.: Soliton-like “bubbles” in a system of interacting bosons. Phys. Lett. A 128, 52–56 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. Berloff, N.: Quantised vortices, travelling coherent structures and superfluid turbulence. In Stationary and time dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, pp. 26–54 2008

  6. Béthuel F., Gravejat P., Saut J-C.: On the KP-I transonic limit of two-dimensional Gross–Pitaevskii travelling waves. Dyn. PDE, 5(3), 241–280 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Béthuel, F., Gravejat, P., Saut, J.-C.: Existence and properties of travelling waves for the Gross–Pitaevskii equation. In: Stationary and time dependent Gross–Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, pp. 55–104 2008

  8. Béthuel F., Gravejat P., Saut J.-C.: Travelling waves for the Gross–Pitaevskii equation II. Commun. Math. Phys. 285, 567–651 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Béthuel F., Orlandi G., Smets D.: Vortex rings for the Gross–Pitaevskii equation. J. Eur. Math. Soc. (JEMS) 6, 17–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Béthuel F., Saut J.-C.: Travelling waves for the Gross–Pitaevskii equation I. Ann. Inst. H. Poincaré Phys. Théor. 70, 147–238 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Béthuel, F., Saut, J.-C.: Vortices and sound waves for the Gross–Pitaevskii equation. In: Nonlinear PDE’s in Condensed Matter and Reactive Flows, H. Berestycki and Y. Pomeau eds., Kluwer Academic Publishers, pp. 339–354 2002

  12. Brézis H.: Analyse fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  13. Brézis H., Bourgain J., Mironescu P.: Lifting in Sobolev Spaces. J. d’Analyse Mathématique 80, 37–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brézis H., Lieb E. H.: Minimum Action Solutions for Some Vector Field Equations. Commun. Math. Phys. 96, 97–113 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cazenave T., Lions P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  16. Chiron D.: Travelling waves for the Gross–Pitaevskii equation in dimension larger than two. Nonlinear Anal. 58, 175–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chiron D.: Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one. Nonlinearity 25, 813–850 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chiron D.: Stability and instability for subsonic travelling waves of the nonlinear Schrödinger equation in dimension one. Anal. PDE 6(6), 1327–1420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chiron D., Mariş M.: Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit. Commun. Math. Phys. 326(2), 329–392 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Chiron D., Scheid C.: Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension two. J. Nonlinear Sci. 26(1), 171–231 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Coste C.: Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B 1, 245–253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  22. de Bouard A., Saut J.-C.: Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 211–236 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. de Bouard A., Saut J.-C.: Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves. SIAM J. Math. Anal. 28(5), 1064–1085 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. de Laire A.: Non-existence for travelling waves with small energy for the Gross–Pitaevskii equation in dimension \({ N \geq 3}\). C. R. Acad. Sci. Paris, Ser. I, 347, 375–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. CRC Press, 1992

  26. Gallo C.: The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity. Commun. PDE 33, 729–771 (2008)

    Article  MATH  Google Scholar 

  27. Gérard P.: The Cauchy Problem for the Gross–Pitaevskii Equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 765–779 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gérard, P.: The Gross-Pitaevskii equation in the energy space. In: Stationary and time dependent Gross-Pitaevskii equations, A. Farina and J.-C. Saut eds., Contemp. Math. Vol. 473, AMS, Providence, RI, pp. 129–148 2008

  29. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, 3rd ed., Springer-Verlag, 2001

  30. Grant J., Roberts P.H.: Motions in a Bose condensate III. The structure and effective masses of charged and uncharged impurities. J. Phys. A: Math., Nucl. Gen., 7, 260–279 (1974)

    Article  ADS  Google Scholar 

  31. Gross E. P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4(2), 195–207 (1963)

    Article  ADS  Google Scholar 

  32. Iordanskii S. V., Smirnov A. V.:) Three-dimensional solitons in He II. JETP Lett. 27(10), 535–538 (1978)

    ADS  Google Scholar 

  33. Jones C. A., Roberts P. H.: Motions in a Bose condensate IV, Axisymmetric solitary waves. J. Phys A: Math. Gen. 15, 2599–2619 (1982)

    Article  ADS  Google Scholar 

  34. Jones C.A., Putterman S.J., Roberts P.H.: Motions in a Bose condensate V. Stability of wave solutions of nonlinear Schrödinger equations in two and three dimensions. J. Phys A: Math. Gen. 19, 2991–3011 (1986)

    Article  ADS  Google Scholar 

  35. Kavian O.: Introduction à à la théorie des points critiques et applications aux problèmes elliptiques. Springer-Verlag, Paris (1993)

    MATH  Google Scholar 

  36. Killip R., Oh T., Pocovnicu O., Vişan M.: Global well-posedness of the Gross–Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions. Math. Res. Lett. 19(5), 969–986 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kivshar Y. S., Luther-Davies B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  ADS  Google Scholar 

  38. Kivshar Y. S., Pelinovsky D. E., Stepanyants Y. A.: Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 51(5), 5016–5026 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kivshar Y. S., Yang X.: Perturbation-induced dynamics of dark solitons. Phys. Rev. E 49, 1657–1670 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  40. Lieb E. H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Lieb, E. H., Loss, M.: Analysis, Graduate Studies in Mathematics Vol. 14, AMS, Providence, RI, 1997

  42. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. Inst. H. Poincaré, Anal. Non linéaire 1, 109–145 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Lopes O.: Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differential Equations 124, 378–388 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Mariş M.: Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. SIAM J. Math. Anal. 40(3), 1076–1103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mariş M.: On the symmetry of minimizers. Arch. Rational Mech. Anal. 192(2), 311–330 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Mariş M.: Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity. Ann. of Math. 178(1), 107–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mariş, M., Nguyen, T.L.: Least energy solutions for general quasilinear elliptic systems. preprint, 2015

  48. Roberts, P., Berloff, N.: Nonlinear Schrödinger equation as a model of superfluid helium. In: “Quantized Vortex Dynamics and Superfluid Turbulence” edited by C.F. Barenghi, R.J. Donnelly and W.F. Vinen, Lecture Notes in Physics, volume 571, Springer-Verlag, 2001

  49. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ, 1970

  50. Willem, M.: Minimax Theorems. In: Progr. Nonlinear Differential Equations Appl., Vol. 24, Birkhäuser, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Mariş.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiron, D., Mariş, M. Traveling Waves for Nonlinear Schrödinger Equations with Nonzero Conditions at Infinity. Arch Rational Mech Anal 226, 143–242 (2017). https://doi.org/10.1007/s00205-017-1131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1131-2

Navigation