Skip to main content
Log in

Asymptotic Linear Stability of Solitary Water Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér. (sér. 4) 48(5), 1149–1238 (2015)

  2. Beale J.T.: The existence of solitary water waves. Commun. Pure Appl. Math. 30(4), 373–389 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beale J.T.: Exact solitary water waves with capillary ripples at infinity. Commun. Pure Appl. Math. 44(2), 211–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjamin T.B.: The stability of solitary waves. Proc. R. Soc. (Lond.) Ser. A 328, 153–183 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin, 1976 (Grundlehren der Mathematischen Wissenschaften, No. 223)

  6. Bona J.: On the stability theory of solitary waves. Proc R. Soc. Lond. Ser. A 344(1638), 363–374 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bona, J.L., Sachs, R.L.: The existence of internal solitary waves in a two-fluid system near the KdV limit. Geophys. Astrophys. Fluid Dyn. 48(1–3), 25–51 (1989)

  8. Boussinesq J.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulair. C. R. Acad. Sci. Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  9. Boussinesq J.: Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  10. Boussinesq J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures et Appliq. 17, 55–108 (1872)

    MathSciNet  Google Scholar 

  11. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants á l’Académie des Sciences Inst. France (séries 2) 23, 1–680 (1877)

  12. Bridges, T.J., Mielke, A.: A proof of the Benjamin-Feir instability. Arch. Ration. Mech. Anal. 133(2), 145–198 (1995). doi:10.1007/BF00376815

  13. Buffoni, B.: Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173(1), 25–68 (2004). doi:10.1007/s00205-004-0310-0

  14. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985). doi:10.1080/03605308508820396

  15. Friedrichs K.O., Hyers D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friesecke G., Pego R.L.: Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12(6), 1601–1627 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Friesecke G., Pego R.L.: Solitary waves on FPU lattices. II. Linear implies nonlinear stability. Nonlinearity 15(4), 1343–1359 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Friesecke G., Pego R.L.: Solitary waves on Fermi–Pasta–Ulam lattices. III. Howland-type Floquet theory. Nonlinearity 17(1), 207–227 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Friesecke G., Pego R.L.: Solitary waves on Fermi–Pasta–Ulam lattices. IV. Proof of stability at low energy. Nonlinearity 17(1), 229–251 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators, vol. I. In: Operator Theory: Advances and Applications, vol. 49. Birkhäuser Verlag, Basel, 1990

  21. Gohberg, I.C., Sigal, E.I.: An operator generalization of the logarithmic residue theorem and Rouché’s theorem. Mat. Sb. (N.S.) 84(126), 607–629 (1971)

  22. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Groves, M.D., Wahlén, E.: On the existence and conditional energetic stability of solitary water waves with weak surface tension. C. R. Math. Acad. Sci. Paris 348(7–8), 397–402 (2010). doi:10.1016/j.crma.2010.01.003

  25. Haragus M., Scheel A.: Finite-wavelength stability of capillary-gravity solitary waves. Commun. Math. Phys. 225(3), 487–521 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ionescu A.D., Pusateri F.: Global solutions for the gravity water waves system in 2D. Invent. Math. 199, 653–804 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966

  28. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. (Ser. 5) 39, 422–443 (1895)

  29. Lannes, D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18(3), 605–654 (2005). doi:10.1090/S0894-0347-05-00484-4 (electronic)

  30. Lavrent’ev M.A.: On the theory of long waves; A contribution to the theory of long waves. Am. Math. Soc. Transl. 102, 3–50 (1954)

    MathSciNet  Google Scholar 

  31. Lin, Z.: On linear instability of 2D solitary water waves. Int. Math. Res. Not. 2009(7):1247–1303 (2009). doi:10.1093/imrn/rnn158

  32. Martel, Y., Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157(3), 219–254 (2001). doi:10.1007/s002050100138

  33. Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18(1), 55–80 (2005). doi:10.1088/0951-7715/18/1/004

  34. Mielke, A.: On the energetic stability of solitary water waves. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360(1799), 2337–2358 (2002). doi:10.1098/rsta.2002.1067 [recent developments in the mathematical theory of water waves (Oberwolfach, 2001)]

  35. Miles J.W.: The Korteweg–de Vries equation: a historical essay. J. Fluid Mech. 106, 131–147 (1981)

    Article  ADS  MATH  Google Scholar 

  36. Miller J.R., Weinstein M.I.: Asymptotic stability of solitary waves for the regularized long-wave equation. Commun. Pure Appl. Math. 49(4), 399–441 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mizumachi, T.: Asymptotic stability of lattice solitons in the energy space. Commun. Math. Phys. 288(1), 125–144 (2009). doi:10.1007/s00220-009-0768-6

  38. Mizumachi, T., Pego, R.L.: Asymptotic stability of Toda lattice solitons. Nonlinearity 21(9), 2099–2111 (2008). doi:10.1088/0951-7715/21/9/011

  39. Pego, R.L.: Compactness in L 2 and the Fourier transform. Proc. Am. Math. Soc. 95(2), 252–254 (1985). doi:10.2307/2044522

  40. Pego R.L., Sun S.M.: On the transverse linear instability of solitary water waves with large surface tension. Proc. R. Soc. Edinb. Sect. A 134(4), 733–752 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164(2), 305–349 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Prüss, J.: On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984). doi:10.2307/1999112

  43. Rayleigh, L.: On waves. Philos. Mag. (Ser. 5) 1, 257–279 (1876)

  44. Rousset, F., Tzvetkov, N.: Transverse instability of the line solitary water-waves. Invent. Math. 184(2), 257–388 (2011). doi:10.1007/s00222-010-0290-7

  45. Russell, J.S.: Report on waves. In: Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311 – 390. John Murray, London, 1844

  46. Schneider G., Wayne C.E.: The long-wave limit for the water wave problem. I. The case of zero surface tension. Commun. Pure Appl. Math. 53(12), 1475–1535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sun, S.M.: Non-existence of truly solitary waves in water with small surface tension. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2191–2228 (1999). doi:10.1098/rspa.1999.0399

  48. Wu, S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130(1), 39–72 (1997). doi:10.1007/s002220050177

  49. Wu, S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177(1), 45–135 (2009). doi:10.1007/s00222-009-0176-8

  50. Zakharov V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Fiz. 9, 86–94 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Pego.

Additional information

Communicated by A. Mielke

This material is based upon work supported by the National Science Foundation under Grant Nos. DMS 06-04420, 09-05723, and 08-07597, and by the Center for Nonlinear Analysis under NSF Grant DMS 06-35983.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pego, R.L., Sun, SM. Asymptotic Linear Stability of Solitary Water Waves. Arch Rational Mech Anal 222, 1161–1216 (2016). https://doi.org/10.1007/s00205-016-1021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1021-z

Navigation