Skip to main content
Log in

Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the well-trodden ground of the problem of the homogenization of random integral functionals. When the integrand has standard growth conditions, the qualitative theory is well-understood. When it comes to unbounded functionals, that is, when the domain of the integrand is not the whole space and may depend on the space-variable, there is no satisfactory theory. In this contribution we develop a complete qualitative stochastic homogenization theory for nonconvex unbounded functionals with convex growth. We first prove that if the integrand is convex and has p-growth from below (with p > d, the dimension), then it admits homogenization regardless of growth conditions from above. This result, that crucially relies on the existence and sublinearity at infinity of correctors, is also new in the periodic case. In the case of nonconvex integrands, we prove that a similar homogenization result holds provided that the nonconvex integrand admits a two-sided estimate by a convex integrand (the domain of which may depend on the space variable) that itself admits homogenization. This result is of interest to the rigorous derivation of rubber elasticity from polymer physics, which involves the stochastic homogenization of such unbounded functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Chiadò Piat V., Dal Maso G., Percivale D.: An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18(5), 481–496 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alber Ya.I.: James orthogonality and orthogonal decompositions of Banach spaces. J. Math. Anal. Appl. 312(1), 330–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alicandro R., Cicalese M., Gloria A.: Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity. Arch. Ration. Mech. Anal. 200(3), 881–943 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aliprantis, Ch.D., Border, K.C.: Infinite dimensional analysis. A Hitchhiker’S Guide, 3rd edn. Springer, Berlin (2006)

  6. Anza Hafsa, O., Mandallena, J.-P.: Homogenization of singular integrals in \({w^{1,\infty}}\) (2010). arXiv:0912.5408v2

  7. Anza Hafsa O., Mandallena J.-P.: Homogenization of nonconvex integrals with convex growth. J. Math. Pures Appl. (9) 96(2), 167–189 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Attouch, H.: Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, 1984

  9. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/1977)

  10. Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, deuxi edn. Wiley, New York, 1999. (A Wiley-Interscience Publication)

  11. Braides A.: Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 9(1), 313–321 (1985)

    MATH  MathSciNet  Google Scholar 

  12. Braides, A., Defranceschi, A.: Homogenization of multiple integrals. Oxford Lecture Series in Mathematics and its Applications, Vol. 12. The Clarendon Press, Oxford University Press, New York, 1998

  13. Braides A., Garroni A.: Homogenization of periodic nonlinear media with stiff and soft inclusions. Math. Models Methods Appl. Sci. 5(4), 543–564 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Braides A., Maslennikov M., Sigalotti L.: Homogenization by blow-up. Appl. Anal. 87(12), 1341–1356 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carbone L., Cioranescu D., De Arcangelis R., Gaudiello A.: Homogenization of unbounded functionals and nonlinear elastomers. The general case. Asymptot. Anal. 29(3–4), 221–272 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Carbone, L., Cioranescu, D., De Arcangelis, R., Gaudiello, A.: Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set. ESAIM Control Optim. Calc. Var. 10(1), 53–83 (2004). (Electronic)

  17. Carbone, L., De Arcangelis, R.: Unbounded functionals in the calculus of variations. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 125. Chapman & Hall/CRC, Boca Raton, 2002. (Representation, relaxation, and homogenization)

  18. Corbo Esposito A., De Arcangelis R.: The Lavrentieff phenomenon and different processes of homogenization. Commun. Partial Differ. Equ. 17(9–10), 1503–1538 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dal Maso G., Modica L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MATH  MathSciNet  Google Scholar 

  20. De Buhan M., Gloria A., Le Tallec P., Vidrascu M.: Reconstruction of a constitutive law for rubber from in silico experiments using Ogden’s laws. Int. J. Solids Struct. 62, 158–173 (2015)

    Article  Google Scholar 

  21. Ekeland, I., Temam, R.: Convex analysis and variational problems. Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam, 1976

  22. Fonseca I.: The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. (9) 67(2), 175–195 (1988)

    MATH  MathSciNet  Google Scholar 

  23. Fonseca I., Müller S.: Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23(5), 1081–1098 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gloria A., Le Tallec P., Vidrascu M.: Foundation, analysis, and numerical investigation of a variational network-based model for rubber. Contin. Mech. Thermodyn. 26(1), 1–31 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gloria, A., Neukamm, S., Otto, F.: A regularity theory for random elliptic operators and homogenization (2015). arXiv:1409.2678

  26. Gloria A., Penrose M.D.: Random parking, Euclidean functionals, and rubber elasticity. Commun. Math. Phys. 321(1), 1–31 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, 1994. (Traduit du russe par G. A. Iosif\({\prime}\)yan)

  28. Koralov, L.B., Sinai, Y.G.: Theory of probability and random processes. Universitext, deuxi edn. Springer, Berlin, 2007

  29. Krengel, U.: Ergodic theorems. de Gruyter Studies in Mathematics, Vol. 6. De Gruyter, Berlin, 1985

  30. Marcellini P.: Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. (4) 117, 139–152 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Messaoudi K., Michaille G.: Stochastic homogenization of nonconvex integral functionals. RAIRO Modél. Math. Anal. Numér. 28(3), 329–356 (1994)

    MATH  MathSciNet  Google Scholar 

  32. Müller S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99(3), 189–212 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. Random fields, Vol. I, II (Esztergom, 1979). Colloq. Math. Soc. János Bolyai Vol. 27. North-Holland, Amsterdam, 835–873, 1981

  34. Tartar, L.: Some remarks on separately convex functions. Microstructure and Phase Transition. IMA Vol. Math. Appl., Vol. 54. Springer, New York, 191–204, 1993

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gloria.

Additional information

Communicated by A. Braides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duerinckx, M., Gloria, A. Stochastic Homogenization of Nonconvex Unbounded Integral Functionals with Convex Growth. Arch Rational Mech Anal 221, 1511–1584 (2016). https://doi.org/10.1007/s00205-016-0992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0992-0

Keywords

Navigation