Skip to main content
Log in

Finite Time Singularity of the Nematic Liquid Crystal Flow in Dimension Three

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the initial and boundary value problem of a simplified nematic liquid crystal flow in dimension three and construct two examples of finite time singularity. The first example is constructed within the class of axisymmetric solutions, while the second example is constructed for any generic initial data \({(u_0,d_0)}\) that has sufficiently small energy, and \({d_0}\) has a nontrivial topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird R.B., Curtiss C.F., Armstrong R.C., Hassager O.: Dynamics of Polymeric Liquids, Kinetic Theory, vol. 2. Wiley-Interscience, New York (1987)

    Google Scholar 

  2. Chang K.C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 363–395 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Chang, K.C., Ding, W.Y.: A result on the global existence for heat flows of harmonic maps from \({D^2}\) into \({S^2}\). Nemantics. (Eds. J.-M. Coron et al.) Kluwer Academic Publishers, Dordrecht, 37–48, 1990

  4. Chang K.C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Chen Y.M., Struwe M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201(1), 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen Y.M., Lin F.H.: Evolution of harmonic maps with Dirichlet boundary conditions. Commun. Anal. Geom. 1(3–4), 327–346 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen Y.M., Ding W.Y.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math. 99(3), 567–578 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Coron J.M., Ghidaglia J.M.: Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris 308, 339–344 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Oxford University Press, UK (1988)

    Google Scholar 

  10. Dong, H.J., Lei, Z.: On a family of exact solutions to the incompressible liquid crystals in two dimensions (2012). arXiv:1205.3697

  11. Ding, S.J., Wang, C.Y.: Finite time singularity of the Landau–Lifshitz–Gilbert equation. Int. Math. Res. Not. IMRN 4, Art. ID rnm012, 25 pp. (2007)

  12. Ericksen J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MATH  MathSciNet  Google Scholar 

  13. Evans L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  15. Grotowski J.: Harmonic map heat flow for axially symmetric data. Manuscr. Math. 73, 207–228 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grotowski J.: Finite time blow-up for the harmonic map heat flow. Calc. Var. Partial Differ. Equ. 1, 231–236 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hélein, F.: Harmonic maps, conservation laws and moving frames, 2nd edn. Cambridge Tracts in Mathematics, Vol. 150. Cambridge University Press, Cambridge, 2002

  18. Hineman J., Wang C.Y.: Well-posedness of nematic liquid crystal flow in \({L^3_{\mathrm{uloc}}({\mathbb{R}}^3)}\). Arch. Ration. Mech. Anal. 210, 177–218 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang J.R., Lin F.H., Wang C.Y.: Regularity and existence of global solutions to the Ericksen–Leslie system in \({{\mathbb{R}}^2}\). Commun. Math. Phys. 331(2), 805–850 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hong M.C.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. Partial Differ. Equ. 40(1–2), 15–36 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hong M.C., Xin Z.P.: Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in \({{\mathbb{R}}^2}\). Adv. Math. 231(3–4), 1364–1400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hong M.C., Li J.K., Xin Z.P.: Blow-up criteria of strong solutions to the Ericksen–Leslie system in \({{\mathbb{R}}^3}\). Commun. Partial Differ. Equ. 39(7), 1284–1328 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hopf E.: Über die Anfangwertaufgaben für die hydromischen Grundgleichungen. Math. Nach. 4, 213–321 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  24. Huang T., Wang C.Y.: Blow up criterion for nematic liquid crystal flows. Commun. Partial Differ. Equ. 37, 875–884 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Leonardi S., Málek J., Nečas J., Pokorný M.: On axially symmetric flows in \({{\mathbb{R}}^3}\). Zeitschrift für Analysis und ihre Anwendungen 18(3), 639–649 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. (French) Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  27. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lei Z., Li D., Zhang X.Y.: Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions. Proc. Am. Math. Soc. 142(11), 3801–3810 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lin F.H.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MATH  Google Scholar 

  30. Lin F.H., Lin J.Y., Wang C.Y.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lin F.H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure. Appl. Math. XLVIII, 501–537 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lin, F.H., Wang, C.Y.: Global existence of weak solutions of the nematic liquid crystal flow in dimensions three. Commun. Pure Appl. Math . doi:10.1002/cpa.21583

  33. Lin F.H., Wang C.Y.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. 31B(6), 921–938 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lin F.H., Wang C.Y.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lin F.H., Wang C.Y.: The Analysis of Harmonic Maps and Their Heat Flows. The World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  36. Lin F.H., Zhang P.: Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67(4), 531–580 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lin F.H., Zhang T.: Global small solutions to a complex fluid model in three dimensional. Arch. Ration. Mech. Anal. 216, 905–929 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lin, F.H., Zhang, P., Xu, L.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259(10), 5440–5485 (2015)

  39. Lions, P.L.: Mathematical topics in fluid mechanics. Vol 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, Vol. 3. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York, 1996

  40. Morrey, C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966

  41. Protter M.H., Weinberger H.F.: Maximum Principle in Differential Equations. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  42. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 23(2), 455–475 (2009)

    MATH  MathSciNet  Google Scholar 

  43. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Commun. Math. Helv. 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  44. Temam R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983)

    MATH  Google Scholar 

  45. Wang C.Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200(1), 1–19 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Wu H., Xu X., Liu C.: On the general Ericksen–Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208(1), 59–107 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Xu X., Zhang Z.F.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equ. 256, 1169–1181 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyou Wang.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Lin, F., Liu, C. et al. Finite Time Singularity of the Nematic Liquid Crystal Flow in Dimension Three. Arch Rational Mech Anal 221, 1223–1254 (2016). https://doi.org/10.1007/s00205-016-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0983-1

Keywords

Navigation