Skip to main content
Log in

On the Impossibility of Finite-Time Splash Singularities for Vortex Sheets

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In fluid dynamics, an interface splash singularity occurs when a locally smooth interface self-intersects in finite time. By means of elementary arguments, we prove that such a singularity cannot occur in finite time for vortex sheet evolution, that is for the two-phase incompressible Euler equations. We prove this by contradiction; we assume that a splash singularity does indeed occur in finite time. Based on this assumption, we find precise blow-up rates for the components of the velocity gradient which, in turn, allow us to characterize the geometry of the evolving interface just prior to self-intersection. The constraints on the geometry then lead to an impossible outcome, showing that our assumption of a finite-time splash singularity was false.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. (2014). arXiv:1212.0626

  2. Alazard, T., Delort, J.-M.: Global solutions and asymptotic behavior for two dimensional gravity water waves (2013, preprint). arXiv:1305.4090

  3. Alazard, T., Delort, J.-M.: Sobolev estimates for two dimensional gravity water waves (2013, preprint). arXiv:1307.3836

  4. Alvarez-Samaniego B., Lannes D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ambrose , Masmoudi N.: The zero surface tension limit of two-dimensional water waves. Commun. Pure Appl. Math. 58, 1287–1315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrose D.M., Masmoudi N.: Well-posedness of 3D vortex sheets with surface tension. Commun. Math. Sci. 5(2), 391–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrose D., Masmoudi N.: The zero surface tension limit of three-dimensional water waves. Indiana Univ. Math. J. 58, 479–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beale J.T., Hou T., Lowengrub J.: Growth rates for the linearized motion of fluid interfaces away from equilibrium. Commun. Pure Appl. Math. 46, 1269–1301 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro, Á., Córdoba, D., Fefferman, C., Gancedo, F., López-Fernández, M.: Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. (2) 175(2), 909–948 (2012)

  10. Castro Á., Córdoba D., Fefferman C., Gancedo F., López-Fernández M.: Turning waves and breakdown for incompressible flows. Proc. Natl. Acad. Sci. 108, 4754–4759 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Castro A., Córdoba D., Fefferman C., Gancedo F., Gómez-Serrano M.: Finite time singularities for the free boundary incompressible Euler equations. Ann. Math. 178, 1061–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Partial Differ. Equ. 10(8), 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng C.H.A., Coutand D., Shkoller S.: On the motion of vortex sheets with surface tension in the 3D Euler equations with vorticity. Commun. Pure Appl. Math. 61(12), 1715–1752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng C.H.A., Coutand D., Shkoller S.: On the limit as the density ratio tends to zero for two perfect incompressible 3-D fluids separated by a surface of discontinuity. Commun. Partial Differ. Equ. 35, 817–845 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Christodoulou D., Lindblad H.: On the motion of the free surface of a liquid. Commun. Pure Appl. Math. 53, 1536–1602 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coutand D., Shkoller S.: A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3, 429–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coutand D., Shkoller S.: On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. Commun. Math. Phys. 325, 143–183 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dacorogna B., Moser J.: On a partial differential equation involving the Jacobian determinant. Ann. Inst. Henri Poincaré (C) Anal. Nonlinéaire 7, 1– (1990)

    MathSciNet  MATH  Google Scholar 

  20. Disconzi M., Ebin D.: On the limit of large surface tension for a fluid motion with free boundary. Commun. Partial Differ. Equ. 39, 740–779 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Disconzi, M., Ebin, D.: The free boundary Euler equations with large surface tension (2015). arXiv:1506.02094

  22. Fefferman, C., Ionescu, A.D., Lie, V.: On the absence of “splash” singularities in the case of two-fluid interfaces (2013, preprint). arXiv:1312.2917

  23. Gancedo, F., Strain, R.: Absence of splash singularities for SQG sharp fronts and the Muskat problem (2013, preprint). arXiv:1309.4023

  24. Germain P., Masmoudi N., Shatah J.: Global solutions for the gravity water waves equation in dimension 3. C. R. Math. Acad. Sci. Paris 347, 897–902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hunter, J., Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates (2014). arXiv:1401.1252

  26. Ifrim, M., Tataru, D.: Two dimensional water waves in holomorphic coordinates II: global solutions (2014). arXiv:1404.7583

  27. Ifrim, M., Tataru, D.: The lifespan of small data solutions in two dimensional capillary water waves (2014). arXiv:1406.5471

  28. Ionescu, A.D., Pusateri, F.: Global solutions for the gravity water waves system in 2d. Invent. Math. (2014). arXiv:1303.5357

  29. Lannes D.: Well-posedness of the water-waves equations. J. Am. Math. Soc. 18, 605–654 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nalimov V.I.: The Cauchy–Poisson problem (in Russian). Dynamika Splosh. Sredy 18, 104–210 (1974)

    MathSciNet  Google Scholar 

  32. Pusateri F.: On the limit as the surface tension and density ratio tend to zero for the two-phase Euler equations. J. Hyperbolic Differ. Equ. 8, 347–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rayleigh L.: On the instability of jets. Proc. Lond. Math. Soc. s1–s10(1), 4–13 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shatah J., Zeng C.: Geometry and a priori estimates for free boundary problems of the Euler equation. Commun. Pure Appl. Math. 61, 698–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shatah J., Zeng C.: Local well-posedness for fluid interface problems. Arch. Rational Mech. Anal. 199, 653–705 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Taylor G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I. Proc. R. Soc. Lond. Ser. A. 201, 192–196 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130, 39–72 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Wu S.: Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12, 445–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu S.: Almost global wellposedness of the 2-D full water wave problem. Invent. Math. 177, 45–135 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wu S.: Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 125–220 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Yosihara H.: Gravity waves on the free surface of an incompressible perfect fluid. Publ. RIMS Kyoto Univ. 18, 49–96 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang P., Zhang Z.: On the free boundary problem of three-dimensional incompressible Euler equations. Commun. Pure Appl. Math. 61, 877–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Shkoller.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutand, D., Shkoller, S. On the Impossibility of Finite-Time Splash Singularities for Vortex Sheets. Arch Rational Mech Anal 221, 987–1033 (2016). https://doi.org/10.1007/s00205-016-0977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0977-z

Keywords

Navigation