Skip to main content
Log in

Quantitative Compactness Estimates for Hamilton–Jacobi Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study quantitative compactness estimates in \({\mathbf{W}^{1,1}_{{\rm loc}}}\) for the map \({S_t}\), \({t > 0}\) that is associated with the given initial data \({u_0\in {\rm Lip} (\mathbb{R}^N)}\) for the corresponding solution \({S_t u_0}\) of a Hamilton–Jacobi equation

$$u_t+H\big(\nabla_{\!x} u\big)=0, \qquad t\geq 0,\quad x\in\mathbb{R}^N,$$

with a uniformly convex Hamiltonian \({H=H(p)}\). We provide upper and lower estimates of order \({1/\varepsilon^N}\) on the Kolmogorov \({\varepsilon}\)-entropy in \({\mathbf{W}^{1,1}}\) of the image through the map S t of sets of bounded, compactly supported initial data. Estimates of this type are inspired by a question posed by Lax (Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002) within the context of conservation laws, and could provide a measure of the order of “resolution” of a numerical method implemented for this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta G., Dúran R.C.: An optimal Poincaré inequality in L 1 for convex domains. Proc. Am. Math. Soc. 132(1), 195–202 (2003)

    Article  MATH  Google Scholar 

  2. Alberti G., Ambrosio L.: A geometrical approach to monotone functions in \({\mathbb{R}^N}\). Math. Z. 230, 259–316 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications/Clarendon Press, Oxford (2000)

  4. Ancona F., Glass O., Nguyen K.T.: Lower compactness estimates for scalar balance laws. Commun. Pure Appl. Math. 65(9), 1303–1329 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ancona, F., Glass, O., Nguyen, K.T.: On compactness estimates for hyperbolic systems of conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014, preprint) (in press) http://arxiv.org/abs/1403.5070. http://dx.doi.org/10.1016/j.anihpc.2014.09.002

  6. Ancona, F., Glass, O., Nguyen, K.T.: On quantitative compactness estimates for hyperbolic conservation laws. In: Hyperbolic Problems: Theory, Numerics and Applications. Proceedings of the 14th International Conference on Hyperbolic Problems (HYP2012), AIMS, Springfield, MO, pp. 249–257, 2014

  7. Bardi, M., Dolcetta, I. Capuzzo: Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations. Birkhäuser, Boston, 1997

  8. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser, Boston, 2004

  9. Crandall M.G., Lions P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc.282, 487–502 (1984)

  11. De Lellis, C., Golse, F.: A quantitative compactness estimate for scalar conservation laws. Commun. Pure Appl. Math. 58(7), 989–998 (2005)

  12. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 319. AMS, Providence, 1991

  13. Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karlsen, K.H., Risebro, N.H.: A note on front tracking and equivalence between viscosity solutions of Hamilton–Jacobi equations and entropy solutions of scalar conservation laws. Nonlinear Anal. Ser. A: Theory Methods 50(4), 455–469 (2002)

  15. Kolmogorov, A.N., Tikhomirov, V.M.: \({\varepsilon}\)-Entropy and \({\varepsilon}\)-capacity of sets in functional spaces. Uspekhi Mat. Nauk 14, 3–86 (1959)

  16. Lax, P.D.: Accuracy and resolution in the computation of solutions of linear and nonlinear equations. In: Recent Advances in Numerical Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1978). Publ. Math. Res. Center Univ. Wisconsin, pp. 107–117. Academic Press, New York, 1978

  17. Lax, P.D.: Course on Hyperbolic Systems of Conservation Laws. XXVII Scuola Estiva di Fisica Matematica, Ravello, 2002

  18. Lin C.-T., Tadmor E.: \({\mathbf{L}^1}\)-Stability and error estimates for approximate Hamilton–Jacobi equations. Numer. Math. 87(4), 701–735 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Temple B.: No L 1-contractive metrics for systems of conservation laws. Trans. Am. Math. Soc. 288, 471–480 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Ancona.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancona, F., Cannarsa, P. & Nguyen, K.T. Quantitative Compactness Estimates for Hamilton–Jacobi Equations. Arch Rational Mech Anal 219, 793–828 (2016). https://doi.org/10.1007/s00205-015-0907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0907-5

Keywords

Navigation