Skip to main content
Log in

The development of an in vitro Pig-a assay in L5178Y cells

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A recent flow cytometry-based in vivo mutagenicity assay involves the hemizygous phosphatidylinositol class A (Pig-a) gene. Pig-a forms the catalytic subunit of N-acetylglucosaminyltransferase required for glycophosphatidylinositol (GPI) anchor biosynthesis. Mutations in Pig-a prevent GPI-anchor synthesis resulting in loss of cell-surface GPI-linked proteins. The aim of the current study was to develop and validate an in vitro Pig-a assay in L5178Y mouse lymphoma cells. Ethyl methanesulfonate (EMS)-treated cells (186.24–558.72 µg/ml; 24 h) were used for method development and antibodies against GPI-linked CD90.2 and stably expressed CD45 were used to determine GPI-status by flow cytometry. Antibody concentration and incubation times were optimised (0.18 µg/ml, 30 min, 4 °C) and Zombie Violet™ (viability marker; 0.5%, 30 min, RT) was included. The optimum phenotypic expression period was 8 days. The low background mutation frequency of GPI-deficiency [GPI(−)] in L5178Y cells (0.1%) constitutes a rare event, thus flow cytometry acquisition parameters were optimised; 104 cells were measured at medium flow rate to ensure a CV ≤ 30%. Spiking known numbers of GPI(−) cells into a wild-type population gave high correlation between measured and spiked numbers (R2 0.999). We applied the in vitro Pig-a assay to a selection of well-validated genotoxic and non-genotoxic compounds. EMS, N-ethyl-N-nitrosourea and 4-nitroquinoline-N-oxide dose dependently increased numbers of GPI(−) cells, while etoposide, mitomycin C, and a bacterial-specific mutagen did not. Cycloheximide and sodium chloride were negative. Sanger sequencing revealed Pig-a mutations in the GPI(−) clones. In conclusion, this in vitro Pig-a assay could complement the in vivo version, and follow up weak Ames positives and late-stage human metabolites or impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan AL, Keeney M (2010) Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol 2010:426218. https://doi.org/10.1155/2010/426218

  • Arima Y, Nishigori C, Takeuchi T, Oka S, Morimoto K, Utani A, Miyachi Y (2006) 4-Nitroquinoline 1-oxide forms 8-hydroxydeoxyguanosine in human fibroblasts through reactive oxygen species. Toxicol Sci 91(2):382–392. https://doi.org/10.1093/toxsci/kfj161

    Article  CAS  PubMed  Google Scholar 

  • Ashby J, Tinwell H, Glover P et al (1994) Potent clastogenicity of the human carcinogen etoposide to the mouse bone marrow and mouse lymphoma L5178Y cells: comparison to Salmonella responses. Environ Mol Mutagen 24(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Beranek DT (1990) Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res Fundam Mol Mech Mutagen 231(1):11–30. https://doi.org/10.1016/0027-5107(90)90173-2

    Article  CAS  Google Scholar 

  • Cammerer Z, Bhalli JA, Cao X et al (2011) Report on stage III Pig-a mutation assays using N-ethyl-N-nitrosourea—comparison with other in vivo genotoxicity endpoints. Environ Mol Mutagen 52(9):721–730. https://doi.org/10.1002/em.20686

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Mort M, Stenson PD, Ball EV, Chuzhanova NA (2010) Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genom 4(6):406

    Article  CAS  Google Scholar 

  • Davies MJ, Phillips BJ, Anderson D, Rumsby PC (1993) Molecular analysis of mutation at the hprt locus of Chinese hamster V79 cells induced by ethyl methanesulphonate and mitomycin C. Mutat Res Environ Mutagen Relat Subj 291(2):117–124. https://doi.org/10.1016/0165-1161(93)90150-X

    CAS  Google Scholar 

  • Dertinger SD, Phonethepswath S, Weller P et al (2011) International Pig-a gene mutation assay trial: evaluation of transferability across 14 laboratories. Environ Mol Mutagen 52(9):690–698. https://doi.org/10.1002/em.20672

    Article  CAS  PubMed  Google Scholar 

  • Dertinger SD, Phonethepswath S, Avlasevich SL et al (2012) Efficient monitoring of in vivo Pig-a gene mutation and chromosomal damage: summary of 7 published studies and results from 11 new reference compounds. Toxicol Sci 130(2):328–348. https://doi.org/10.1093/toxsci/kfs258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolsky VN, Miura D, Heflich RH, Dertinger SD (2010) The in vivo pig-a gene mutation assay, a potential tool for regulatory safety assessment. Environ Mol Mutagen 51(8–9):825–835

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolsky VN, Elespuru RK, Bigger CAH, Robison TW, Heflich RH (2011) Monitoring humans for somatic mutation in the endogenous pig-a gene using red blood cells. Environ Mol Mutagen 52(9):784–794. https://doi.org/10.1002/em.20667

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Miura D, Heflich RH (2013) Detection of in vivo mutation in the Hprt and Pig-a genes of rat lymphocytes. Methods Mol Biol 1044:79–95. https://doi.org/10.1007/978-1-62703-529-3_4

  • Dobrovolsky VN, Revollo J, Pearce MG, Pacheco-Martinez MM, Lin H (2015) CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene. Environ Mol Mutagen 56(8):674–683

    Article  CAS  PubMed  Google Scholar 

  • Donnenberg AD, Donnenberg VS (2007) Rare-event analysis in flow cytometry. Clin Lab Med 27(3):627–652

    Article  PubMed  Google Scholar 

  • Fellows MD, O’Donovan MR, Lorge E, Kirkland D (2008) Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test: II: practical aspects with toxic agents. Mutat Res Genet Toxicol Environ Mutagen 655(1):4–21

    Article  CAS  Google Scholar 

  • Fowler P, Whitwell J, Jeffrey L, Young J, Smith K, Kirkland D (2010) Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487. Mutat Res Genet Toxicol Environ Mutagen 702(2):175–180. https://doi.org/10.1016/j.mrgentox.2010.02.018

    Article  CAS  Google Scholar 

  • Gabdoulkhakova A, Henriksson G, Avkhacheva N, Sofin A, Bredberg A (2007) High rate of mutation reporter gene inactivation during human T cell proliferation. Immunogenetics 59(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Hillmen P, Bessler M, Mason PJ, Watkins WM, Luzzatto L (1993) Specific defect in N-acetylglucosamine incorporation in the biosynthesis of the glycosylphosphatidylinositol anchor in cloned cell lines from patients with paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci 90(11):5272–5276

    Article  Google Scholar 

  • Hu R, Mukhina GL, Lee SH, Jones RJ, Englund PT, Brown P, Sharkis SJ, Buckley JT, Brodsky RA (2009) Silencing of genes required for glycosylphosphatidylinositol anchor biosynthesis in Burkitt lymphoma. Exp Hematol 37(4):423–434 e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawagoe K, Takeda J, Endo Y, Kinoshita T (1994) Molecular cloning of murine pig-a, a gene for GPI-anchor biosynthesis, and demonstration of interspecies conservation of its structure, function, and genetic locus. Genomics 23(3):566–574

    Article  CAS  PubMed  Google Scholar 

  • Keller P, Tremml G, Rosti V, Bessler M (1999) X inactivation and somatic cell selection rescue female mice carrying a Piga-null mutation. Proc Natl Acad Sci 96(13):7479–7483

    Article  Google Scholar 

  • Kimoto T, Horibata K, Miura D et al (2016) The PIGRET assay, a method for measuring Pig-a gene mutation in reticulocytes, is reliable as a short-term in vivo genotoxicity test: summary of the MMS/JEMS-collaborative study across 16 laboratories using 24 chemicals. Mutat Res Genet Toxicol Environ Mutagen 811:3–15. https://doi.org/10.1016/j.mrgentox.2016.10.003

    Article  CAS  Google Scholar 

  • Kirkland D, Kasper P, Martus H-J, Muller L, van Benthem J, Madia F, Corvi R (2016) Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. Mutat Res Genet Toxicol Environ Mutagen 795:7–30. https://doi.org/10.1016/j.mrgentox.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  • Krüger CT, Hofmann M, Hartwig A (2015) The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 89(12):2429–2443

    Article  PubMed  Google Scholar 

  • Krüger CT, Fischer BM, Armant O, Morath V, Strähle U, Hartwig A (2016) The in vitro PIG-A gene mutation assay: glycosylphosphatidylinositol (GPI)-related genotype-to-phenotype relationship in TK6 cells. Arch Toxicol 90(7):1729–1736. https://doi.org/10.1007/s00204-016-1707-x

    Article  PubMed  Google Scholar 

  • Labash C, Avlasevich SL, Carlson K, Torous D, Berg A, Bemis J, MacGregor J, Dertinger, S (2015a) Comparison of male versus female responses in the Pig-a mutation assay. Mutagenesis 30(3):349–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labash C, Bryce S, Bemis JC, Dertinger SD (2015b) Development of an in vitro Pig-a gene mutation assay based on L5178Y cells and the surface markers CD90 and CD45. Environ Mol Mutagen 56:S53-S53

    Google Scholar 

  • Lynch AM, Giddings A, Custer L, Gleason C, Henwood A, Aylott M, Kenny J (2011) International Pig-a gene mutation assay trial (stage III): results with N-methyl-N-nitrosourea. Environ Mol Mutagen 52(9):699–710. https://doi.org/10.1002/em.20691

    Article  CAS  PubMed  Google Scholar 

  • McKinzie PB, Revollo JR (2017) Whole genome sequencing of mouse lymphoma L5178Y-3.7.2C (TK+/–) reveals millions of mutations and genetic markers. Mutat Res Genet Toxicol Environ Mutagen 814:1–6. https://doi.org/10.1016/j.mrgentox.2016.12.001

    Article  CAS  Google Scholar 

  • Nafa K, Mason P, Hillmen P, Luzzatto L, Bessler M (1995) Mutations in the PIG-A gene causing paroxysmal nocturnal hemoglobinuria are mainly of the frameshift type. Blood 86(12):4650–4655

    CAS  PubMed  Google Scholar 

  • Nakamura J, Gul H, Tian X, Bultman SJ, Swenberg JA (2012) Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system. PLoS One 7(3):e33563. https://doi.org/10.1371/journal.pone.0033563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NC3Rs National Centre for the Replacement, Refinement and Reduction of Animals in Research (2016) The 3Rs. http://nc3rs.org.uk/the-3rs. Accessed 28 Apr 2017

  • NCBI (2017) https://www.ncbi.nlm.nih.gov/nuccore/NM_011081.2

  • Nicklas JA, Carter EW, Albertini RJ (2015) Both PIGA and PIGL mutations cause GPI-a deficient isolates in the Tk6 cell line. Environ Mol Mutagen 56(8):663–673. https://doi.org/10.1002/em.21953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donovan M (2012) A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis 27(6):615–621

    Google Scholar 

  • OECD (2014) OECD Guideline for the Testing of Chemicals. Test no. 487: in vitro mammalian cell micronucleus test

  • Oldaker TA, Wallace PK, Barnett D (2016) Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma. Cytom Part B Clin Cytom 90(1):40–46

    Article  Google Scholar 

  • Peruzzi B, Araten DJ, Notaro R, Luzzatto L (2010) The use of PIG-A as a sentinel gene for the study of the somatic mutation rate and of mutagenic agents in vivo. Mutat Res Rev Mutat Res 705(1):3–10. https://doi.org/10.1016/j.mrrev.2009.12.004

    Article  CAS  Google Scholar 

  • Rees BJ, Tate M, Lynch AM, Thornton CA, Jenkins GJ, Walmsley RM, Johnson GE (2017) Development of an in vitro PIG-A gene mutation assay in human cells. Mutagenesis 32(2):283–297. https://doi.org/10.1093/mutage/gew059

    Article  PubMed  Google Scholar 

  • Revollo J, Pearce MG, Petibone DM, Mittelstaedt RA, Dobrovolsky VN (2015) Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats. Mutagenesis 30(3):315–324

    Article  Google Scholar 

  • Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res Rev Genet Toxicol 134(2):113–142. https://doi.org/10.1016/0165-1110(84)90007-1

    Article  CAS  Google Scholar 

  • Wangenheim J, Bolcsfoldi G (1988) Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. Mutagenesis 3(3):193–205

    Article  CAS  PubMed  Google Scholar 

  • Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T (1999) Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 339(Pt 1):185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(suppl 1):D668–D672

    Google Scholar 

  • Yamamoto M, Wakata A (2016) Evaluation of in vivo gene mutation with etoposide using Pig-a and PIGRET assays. Mutat Res Genet Toxicol Environ Mutagen 811:29–34

    Article  CAS  Google Scholar 

  • Zhang L-S, Honma M, Hayahshi M, Suzuki T, Matsuoka A, Sofuni T (1995) A comparative study of TK6 human lymphoblastoid and L5178Y mouse lymphoma cell lines in the in vitro micronucleus test. Mutat Res Lett 347(3):105–115

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by AstraZeneca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhiannon David.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, R., Talbot, E., Allen, B. et al. The development of an in vitro Pig-a assay in L5178Y cells. Arch Toxicol 92, 1609–1623 (2018). https://doi.org/10.1007/s00204-018-2157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2157-4

Keywords

Navigation