Skip to main content

Advertisement

Log in

Monitoring cytochrome P450 activity in living hepatocytes by chromogenic substrates in response to drug treatment or during cell maturation

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The metabolic activity of hepatocytes is a central prerequisite for drug activity and a key element in drug–drug interaction. This central role in metabolism largely depends on the activity of the cytochrome P450 (CYP450) enzyme family, which is not only dependent on liver cell maturation but is also controlled in response to drug and chemical exposure. Here, we report the use of VividDye fluorogenic CYP450 substrates to directly measure and continuously monitor metabolic activity in living hepatocytes. We observed time- and dose-dependent correlation in response to established and putative CYP450 inducers acting through the aryl hydrocarbon receptor and drug combinations. Using repetitive addition of VividDye fluorogenic substrate on a daily basis, we demonstrated the new application of VividDye for monitoring the maturation and dedifferentiation of hepatic cells. Despite a lack of high specificity for individual CYP450 isoenzymes, our approach enables continuous monitoring of metabolic activity in living cells with no need to disrupt cultivation. Our assay can be integrated in in vitro liver-mimetic models for on-line monitoring and thus should enhance the reliability of these tissue model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi J, Mori Y, Matsui S, Takigami H, Fujino J et al (2001a) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276:31475–31478

    Article  CAS  PubMed  Google Scholar 

  • Adachi J, Mori Y, Matsui S, Takigami H, Fujino J et al (2001b) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276:31475–31478

    Article  CAS  PubMed  Google Scholar 

  • Adachi J, Mori Y, Matsui S, Matsuda T (2004) Comparison of gene expression patterns between 2,3,7,8-tetrachlorodibenzo-p-dioxin and a natural arylhydrocarbon receptor ligand, indirubin. Toxicol Sci 80:161–169

    Article  CAS  PubMed  Google Scholar 

  • Agastin S, Giang U-BT, Geng Y, DeLouise LA, King MR (2011) Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5:024110

    Article  PubMed Central  Google Scholar 

  • Andersson TB, Kanebratt KP, Kenna JG (2012) The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol 8:909–920

    Article  CAS  PubMed  Google Scholar 

  • Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Balis U, Yarmush M, Toner M (1998) Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog 14:378–387

    Article  CAS  PubMed  Google Scholar 

  • Casper RF, Quesne M, Rogers IM, Shirota T, Jolivet A et al (1999) Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol Pharmacol 56:784–790

    CAS  PubMed  Google Scholar 

  • Cheng X, Rasque P, Vatter S, Merz KH, Eisenbrand G (2010) Synthesis and cytotoxicity of novel indirubin-5-carboxamides. Bioorg Med Chem 18:4509–4515

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Merz KH, Vatter S, Christ J, Wolfl S et al (2014) 7,7′-Diazaindirubin—a small molecule inhibitor of casein kinase 2 in vitro and in cells. Bioorg Med Chem 22:247–255

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Yoshida H, Raoofi D, Saleh S, Alborzinia H et al (2015a) Ethyl 2-((4-Chlorophenyl)amino)thiazole-4-carboxylate and Derivatives Are Potent Inducers of Oct3/4. J Med Chem 58:5742–5750

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Dimou E, Alborzinia H, Wenke F, Gohring A et al (2015b) Identification of 2-[4-[(4-Methoxyphenyl)methoxy]-phenyl]acetonitrile and Derivatives as Potent Oct3/4 Inducers. J Med Chem 58:4976–4983

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Kim JY, Ghafoory S, Duvaci T, Rafiee R et al (2016) Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol Oncol 10:806–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38:211–218

    Article  CAS  PubMed  Google Scholar 

  • Chung I, Bresnick E (1994) 3-Methylcholanthrene-mediated induction of cytochrome P4501A2 in human hepatoma HepG2 cells as quantified by the reverse transcription-polymerase chain reaction. Arch Biochem Biophys 314:75–81

    Article  CAS  PubMed  Google Scholar 

  • Ciolino HP, Yeh GC (1999) Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol 56:760–767

    CAS  PubMed  Google Scholar 

  • Ciolino HP, Daschner PJ, Yeh GC (1998) Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 58:5707–5712

    CAS  PubMed  Google Scholar 

  • De Montellano PRO (2005) Cytochrome P450: structure, mechanism, and biochemistry: Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Denison M, Heath-Pagliuso S (1998) The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol 61:557–568

    Article  CAS  PubMed  Google Scholar 

  • Elaut G, Henkens T, Papeleu P, Snykers S, Vinken M, Vanhaecke T, Rogiers V (2006) Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab 7:629–660. https://doi.org/10.2174/138920006778017759

    Article  CAS  PubMed  Google Scholar 

  • Friedman MA, Woodcock J, Lumpkin MM, Shuren JE, Hass AE et al (1999) The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA 281:1728–1734

    Article  CAS  PubMed  Google Scholar 

  • Funatsu K, Ijima H, Nakazawa K, Yamashita Y, Shimada M et al (2001) Hybrid artificial liver using hepatocyte organoid culture. Artif Organs 25:194–200

    Article  CAS  PubMed  Google Scholar 

  • Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO et al (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28:69–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Muller A, Tuschl G, Mueller SO, Dooley S (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49:2031–2043. https://doi.org/10.1002/hep.22880

    Article  CAS  PubMed  Google Scholar 

  • Godoy P, Hewitt N, Albrecht U, Andersen M, Ansari N et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göttel M, Le Corre L, Dumont C, Schrenk D, Chagnon M-C (2014) Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Rep 1:1029–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Guengerich FP, Sorrells JL, Schmitt S, Krauser JA, Aryal P et al (2004) Generation of new protein kinase inhibitors utilizing cytochrome P450 mutant enzymes for indigoid synthesis. J Med Chem 47:3236–3241

    Article  CAS  PubMed  Google Scholar 

  • Guguen-Guillouzo C, Guillouzo A (2010) General review on in vitro hepatocyte models and their applications. In: Maurel P (ed) Hepatocytes. Methods in molecular biology (Methods and protocols), vol 640. Humana Press, pp 1–40

  • Hankinson O (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35:307–340

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Utesch D, Steinberg P, Platt K, Diener B et al (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    Article  CAS  PubMed  Google Scholar 

  • Hewitt NJ, Gómez Lechón MJ, Houston JB, Hallifax D, Brown HS et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  CAS  PubMed  Google Scholar 

  • Hou YT, Ijima H, Matsumoto S, Kubo T, Takei T, Sakai S, Kawakami K (2010) Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. J Biosci Bioeng 110:208–216. https://doi.org/10.1016/j.jbiosc.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wang H, Sinz M, Zoeckler M, Staudinger J et al (2006) Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 26:258–268

    Article  CAS  PubMed  Google Scholar 

  • Kanebratt KP, Andersson TB (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos 36:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Kang YB, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C et al. (2015) Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfluidic platforms. Biotechnol Bioeng

  • Kelly JH, Sussman NL (2000) A fluorescent cell-based assay for cytochrome P-450 isozyme 1A2 induction and inhibition. J Biomol Screen 5:249–253

    Article  CAS  PubMed  Google Scholar 

  • Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C et al (2015) Microengineered liver tissues for drug testing. J Lab Autom 20:216–250

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Lee JY, Jones CN, Revzin A, Tae G (2010) Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 31:3596–3603. https://doi.org/10.1016/j.biomaterials.2010.01.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318. https://doi.org/10.1021/bi00350a005

    Article  CAS  PubMed  Google Scholar 

  • Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM et al (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220

    Article  PubMed  Google Scholar 

  • LeCluyse EL (2001) Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation. Eur J Pharm Sci 13:343–368. https://doi.org/10.1016/S0928-0987(01)00135-X

    Article  CAS  PubMed  Google Scholar 

  • Lee PJ, Hung PJ, Lee LP (2007) An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 97:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Lee S-A, Choi YY, Park D, Jang JY, Kim D-S et al (2012) Functional 3D human primary hepatocyte spheroids made by co-culturing hepatocytes from partial hepatectomy specimens and human adipose-derived stem cells. PLoS One 7:e50723

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy G, Bomze D, Heinz S, Ramachandran SD, Noerenberg A et al (2015) Long-term culture and expansion of primary human hepatocytes. Nat Biotechnol 33:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Li W, Harper PA, Tang B-K, Okey AB (1998) Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene. Biochem Pharmacol 56:599–612

    Article  CAS  PubMed  Google Scholar 

  • Loskill P, Marcus SG, Mathur A, Reese WM, Healy KE (2015) μOrgano: A Lego®-like plug and play system for modular multi-organ-chips. PLoS One 10:e0139587

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2001) Induction of CYP1A1. The AhR/DRE paradigm transcription, receptor regulation, and expanding biological roles. Curr Drug Metab 2:149–164

    Article  CAS  PubMed  Google Scholar 

  • Mandal PK (2005) Dioxin: a review of its environmental effects and its aryl hydrocarbon receptor biology. J Comp Physiol B 175:221–230

    Article  CAS  PubMed  Google Scholar 

  • Nupura SB, Vijayan M, Solange M, Ali T, Masoumeh G et al (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:014101

    Article  Google Scholar 

  • Paine AJ, Andreakos E (2004) Activation of signalling pathways during hepatocyte isolation: relevance to toxicology in vitro. Toxicol In Vitro 18:187–193. https://doi.org/10.1016/S0887-2333(03)00146-2

    Article  CAS  PubMed  Google Scholar 

  • Poellinger L (2000) Mechanistic aspects the dioxin (aryl hydrocarbon) receptor. Food Addit Contam 17:261–266

    Article  CAS  PubMed  Google Scholar 

  • Prestwich GD, Liu Y, Yu B, Shu XZ, Scott A (2007) 3-D culture in synthetic extracellular matrices: new tissue models for drug toxicology and cancer drug discovery. Adv Enzyme Regul 47:196–207

    Article  CAS  PubMed  Google Scholar 

  • Putnam AJ, Mooney DJ (1996) Tissue engineering using synthetic extracellular matrices. Nat Med 2(7):824–826

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran SD, Schirmer K, Münst B, Heinz S, Ghafoory S et al (2015) In vitro generation of functional liver organoid-like structures using adult human cells. PLoS One 10:e0139345

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranucci CS, Kumar A, Batra SP, Moghe PV (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21:783–793. https://doi.org/10.1016/S0142-9612(99)00238-0

    Article  CAS  PubMed  Google Scholar 

  • Reiners JJ, Cantu AR, Pavone A, Smith SC, Gardner CR et al (1990) Fluorescence assay for per-cell estimation of cytochrome P-450-dependent monooxygenase activities in keratinocyte suspensions and cultures. Anal Biochem 188:317–324

    Article  CAS  PubMed  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53. https://doi.org/10.1016/S0142-9612(98)00107-0

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  PubMed  Google Scholar 

  • Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H-C et al (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808

    Article  CAS  PubMed  Google Scholar 

  • Theobald J, Ghanem A, Wallisch P, Banaeiyan AA, Andrade-Navarro MA, Taskova K, Haltmeier M, Kurtz A, Becker H, Reuter S, Mrowka R, Cheng X, Wölfl S (2017) Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.7b00417

    Google Scholar 

  • Tong JZ, Bernard O, Alvarez F (1990) Long-term culture of rat liver cell spheroids in hormonally defined media. Exp Cell Res 189:87–92. https://doi.org/10.1016/0014-4827(90)90260-H

    Article  CAS  PubMed  Google Scholar 

  • Trubetskoy OV, Gibson JR, Marks BD (2005) Highly miniaturized formats for in vitro drug metabolism assays using Vivid® fluorescent substrates and recombinant human cytochrome P450 enzymes. J Biomol Screen 10:56–66

    Article  CAS  PubMed  Google Scholar 

  • Vinken M, Papeleu P, Snykers S, de Rop E, Henkens T, Chipman JK, Rogiers V, Vanhaecke T (2006) Involvement of cell junctions in hepatocyte culture functionality. Crit Rev Toxicol 36:299–318. https://doi.org/10.1080/10408440600599273

    Article  CAS  PubMed  Google Scholar 

  • Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsacker F, Thurmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127–2236. https://doi.org/10.1002/hep.23930

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Nikon Imaging Centre, University of Heidelberg, for providing the possibility to use their microscopically setup. Special thanks to Dr. Ulrike Engel for her support in optimizing the microscopically setup and her expert assistance and technical support. The authors would like to thank Saskia Schmitteckert for the substantial help in performing the experiments.

Author information

Authors and Affiliations

Authors

Contributions

JT, Experimental design, performed experiments, performed data analysis, wrote the manuscript. XC, Performed experiments, experimental design, performed data analysis. AG, Experimental design, performed experiments. HG Isolated primary murine hepatocytes, performed experiments. GS Developed and provided iHep cells. EK Participated in experimental design. JW Participated in experimental design. HB, Developed and manufactured the Chip-design. RM, Participated in experimental design. KB-H Experimental design, corrected the manuscript. SD, Supervised experiments, corrected the manuscript. SW, Supervised experiments, experimental design, corrected the manuscript.

Corresponding author

Correspondence to Stefan Wölfl.

Ethics declarations

Founding sources

BMBF SysTox: FKZ 031A303E iPS-Profiler: FKZ 01EK1612C, DFG Grant program (CH 1690/2-1).

Conflict of interest

The authors declare that they have no competing financial interest.

Data availability statement

All data are is included in the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1585 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theobald, J., Cheng, X., Ghanem, A. et al. Monitoring cytochrome P450 activity in living hepatocytes by chromogenic substrates in response to drug treatment or during cell maturation. Arch Toxicol 92, 1133–1149 (2018). https://doi.org/10.1007/s00204-017-2128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2128-1

Keywords

Navigation