Skip to main content

Advertisement

Log in

The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A number of industrial chemicals and therapeutic agents cause liver tumors in rats and mice by activating the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). The molecular and cellular events by which PPARα activators induce rodent hepatocarcinogenesis have been extensively studied elucidating a number of consistent mechanistic changes linked to the increased incidence of liver neoplasms. The weight of evidence relevant to the hypothesized mode of action (MOA) for PPARα activator-induced rodent hepatocarcinogenesis is summarized here. Chemical-specific and mechanistic data support concordance of temporal and dose–response relationships for the key events associated with many PPARα activators. The key events (KE) identified in the MOA are PPARα activation (KE1), alteration in cell growth pathways (KE2), perturbation of hepatocyte growth and survival (KE3), and selective clonal expansion of preneoplastic foci cells (KE4), which leads to the apical event—increases in hepatocellular adenomas and carcinomas (KE5). In addition, a number of concurrent molecular and cellular events have been classified as modulating factors, because they potentially alter the ability of PPARα activators to increase rodent liver cancer while not being key events themselves. These modulating factors include increases in oxidative stress and activation of NF-kB. PPARα activators are unlikely to induce liver tumors in humans due to biological differences in the response of KEs downstream of PPARα activation. This conclusion is based on minimal or no effects observed on cell growth pathways and hepatocellular proliferation in human primary hepatocytes and absence of alteration in growth pathways, hepatocyte proliferation, and tumors in the livers of species (hamsters, guinea pigs and cynomolgus monkeys) that are more appropriate human surrogates than mice and rats at overlapping dose levels. Despite this overwhelming body of evidence and almost universal acceptance of the PPARα MOA and lack of human relevance, several reviews have selectively focused on specific studies that, as discussed, contradict the consensus opinion and suggest uncertainty. In the present review, we systematically address these most germane suggested weaknesses of the PPARα MOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAR:

Constitutive activated receptor

DEHP:

Di-(2-ethylhexyl)phthalate

DINP:

Diisononyl phthalate

KE:

Key event

MOA:

Mode of action

PPARα:

Peroxisome proliferator-activated receptor α

PPARβ:

Peroxisome proliferator-activated receptor β

PPARγ:

Peroxisome proliferator-activated receptor γ

PFHxS:

Perfluorohexanesulfonic acid

PFNA:

Perfluorononanoic acid

PFOA:

Perfluorooctanoic acid

PFOS:

Perfluorooctane sulfonate

PPREs:

Peroxisome proliferator response elements

TNF:

Tumor necrosis factor

WY:

WY-14,643

IL:

Interleukin

miRNA:

MicroRNA

TGF:

Tumor growth factor

ROS:

Reactive oxygen species

ACO:

Acyl CoA oxidase

EMSA:

Electrophoretic mobility shift assays

TCA:

Trichloroacetate

TCE:

Trichloroethylene

DEN:

Diethylnitrosamine

APFO:

Ammonium perfluorooctanoate

DEHA:

Bis(2-ethylhexyl) adipate

CPDB:

Carcinogenic potency database

ED50:

Effective dose, 50

RCT:

Randomized controlled trials

RR:

Relative risk

CI:

Confidence interval

MEHP:

Mono-(2-ethylhexyl) phthalate

References

  • Abdellatif AG, Preat V, Vamecq J, Nilsson R, Roberfroid M (1990) Peroxisome proliferation and modulation of rat liver carcinogenesis by 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopindichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Carcinogenesis 11(11):1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Abdellatif AG, Preat V, Taper HS, Roberfroid M (1991) The modulation of rat liver carcinogenesis by perfluorooctanoic acid, a peroxisome proliferator. Toxicol Appl Pharmacol 111(3):530–537

    Article  CAS  PubMed  Google Scholar 

  • Alsarra IA, Brockmann WG, Cunningham ML, Badr MZ (2006) Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for Kupffer cells? J Carcinog 5:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amacher DE, Beck R, Schomaker SJ, Kenny CV (1997) Hepatic microsomal enzyme induction, beta-oxidation, and cell proliferation following administration of clofibrate, gemfibrozil, or bezafibrate in the CD rat. Toxicol Appl Pharmacol 142(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Anderson SP, Dunn CS, Cattley RC, Corton JC (2001) Hepatocellular proliferation in response to a peroxisome proliferator does not require TNFαlpha signaling. Carcinogenesis 22:1843–1851

    Article  CAS  PubMed  Google Scholar 

  • Anderson SP, Yoon L, Richard EB, Dunn CS, Cattley RC, Corton JC (2002) Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice. Hepatology 36(3):544–554

    Article  CAS  PubMed  Google Scholar 

  • Anderson SP, Dunn C, Laughter A, Yoon L, Swanson C, Stulnig TM, Steffensen KR, Chandraratna RA, Gustafsson JA, Corton JC (2004a) Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor alpha, retinoid X receptor, and liver X receptor in mouse liver. Mol Pharmacol 66(6):1440–1452

    Article  CAS  PubMed  Google Scholar 

  • Anderson SP, Howroyd P, Liu J, Qian X, Bahnemann R, Swanson C, Kwak MK, Kensler TW, Corton JC (2004b) The transcriptional response to a peroxisome proliferator-activated receptor alpha agonist includes increased expression of proteome maintenance genes. J Biol Chem 279(50):52390–52398

    Article  CAS  PubMed  Google Scholar 

  • Aoyama T, Peters J, Iritani N, Nakajima T, Furihata K, Hashimotot T, Gonzalez FJ et al (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). J Biol Chem 273(10):5678–5684

    Article  CAS  PubMed  Google Scholar 

  • Arsura M, Cavin LG (2005) Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett 229(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Ashby J, Brady A, Elcombe CR, Elliott BM, Ishmael J, Odum J, Tugwood JD, Kettle S, Purchase IF (1994) Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis. Hum Exp Toxicol 13(Suppl 2):S1–S117

    Article  PubMed  Google Scholar 

  • Austin EW, Okita JR, Okita RT, Larson JL, Bull RJ (1995) Modification of lipoperoxidative effects of dichloroacetate and trichloroacetate is associated with peroxisome proliferation. Toxicology 97(1–3):59–69

    Article  CAS  PubMed  Google Scholar 

  • Barrass NC, Price RJ, Lake BG, Orton TC (1993) Comparison of the acute and chronic mitogenic effects of the peroxisome proliferators methylclofenapate and clofibric acid in rat liver. Carcinogenesis 14(7):1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Bayly AC, Roberts RA, Dive C (1994) Suppression of liver cell apoptosis in vitro by the non-genotoxic hepatocarcinogen and peroxisome proliferator nafenopin. J Cell Biol 125(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Becuwe P, Dauça M (2005) Comparison of cytotoxicity induced by hypolipidemic drugs via reactive oxygen species in human and rodent liver cells. Int J Mol Med 16(3):483–492

    CAS  PubMed  Google Scholar 

  • Bell DR, Plant NJ, Rider CG, Na L, Brown S, Ateitalla I, Acharya SK, Davies MH, Elias E, Jenkins NA et al (1993) Species-specific induction of cytochrome P-450 4A RNAs: PCR cloning of partial guinea-pig, human and mouse CYP4A cDNAs. Biochem J 294(Pt 1):173–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell AR, Savory R, Horley NJ, Choudhury AI, Dickins M, Gray TJ, Salter SM, Bell DR (1998) Molecular basis of non-responsiveness to peroxisome proliferators: the guinea-pig PPARα is functional and mediates peroxisome proliferator-induced hypolipidaemia. Biochem J 332(Pt 3):689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, Williams DE (2011) Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol Sci 120(1):42–58

    Article  CAS  PubMed  Google Scholar 

  • Bentley P, Calder I, Elcombe C, Grasso P, Stringer D, Wiegand HJ (1993) Hepatic peroxisome proliferation in rodents and its significance for humans. Food Chem Toxicol 31:857–907

    Article  CAS  PubMed  Google Scholar 

  • Biegel LB, Hurtt ME, Frame SR, O’Connor JC, Cook JC (2001) Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci 60(1):44–55

    Article  CAS  PubMed  Google Scholar 

  • Bility MT, Thompson JT, McKee RH, David RM, Butala JH, Vanden Heuvel JP, Peters JM (2004) Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicol Sci 82(1):170–182

    Article  CAS  PubMed  Google Scholar 

  • Blumcke S, Schwartzkopff W, Lobeck H, Edmondson NA, Prentice DE, Blane GF (1983) Influence of fenofibrate on cellular and subcellular liver structure in hyperlipidemic patients. Atherosclerosis 46:105–116

    Article  CAS  PubMed  Google Scholar 

  • Bojes HK, Germolec DR, Simeonova P, Bruccolrei A, Schoonhoven R, Luster MI, Thurman RG (1997) Antibodies to tumor necrosis factor alpha prevent increases in cell replication in liver due to the potent peroxisome proliferator WY14,643. Carcinogenesis 18:669–674

    Article  CAS  PubMed  Google Scholar 

  • Bonovas S, Sitaras NM (2012) Editorial: prophylactic treatment with antiviral agents to prevent infection and disease. Curr Med Chem 19(35):5923

    CAS  PubMed  Google Scholar 

  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C (2008) IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol 38(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ (1990) Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology 63(3):341–359

    Article  CAS  PubMed  Google Scholar 

  • Bull RJ, Orner GA, Cheng RS, Stillwell L, Stauber AJ, Sasser LB, Lingohr MK, Thrall BD (2002) Contribution of dichloroacetate and trichloroacetate to liver tumor induction in mice by trichloroethylene. Toxicol Appl Pharmacol 182(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt S, Mellert W, Reinacher M, Bahnenmann R (2001) Zonal evaluation of proliferation and apoptosis in mice reveals new mechanistic data for PB, WY 14,643 and CH. Toxicologist 60:286

    Google Scholar 

  • Bursch W, Lauer B, Timmermann-Trosiener I, Barthel G, Schuppler J, Schulte-Hermann R (1984) Controlled death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis 5(4):453–458

    Article  CAS  PubMed  Google Scholar 

  • Busser MT, Lutz WK (1987) Stimulation of DNA synthesis in rat and mouse liver by various tumor promoters. Carcinogenesis 8(10):1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Appelkvist EL, DePierre JW (1995) Hepatic oxidative stress and related defenses during treatment of mice with acetylsalicylic acid and other peroxisome proliferators. J Biochem Toxicol 10(2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Caira F, Clémencet MC, Cherkaoui-Malki M, Dieuaide-Noubhani M, Pacot C, Van Veldhoven PP, Latruffe N (1998) Differential regulation by a peroxisome proliferator of the different multifunctional proteins in guinea pig: cDNA cloning of the guinea pig D-specific multifunctional protein 2. Biochem J 330(Pt 3):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldwell JC (2012) DEHP: genotoxicity and potential carcinogenic mechanisms-a review. Mutat Res 751(2):82–157

    Article  CAS  PubMed  Google Scholar 

  • Calfee-Mason KG, Spear BT, Glauert HP (2004) Effects of vitamin E on the NF-kappaB pathway in rats treated with the peroxisome proliferator, ciprofibrate. Toxicol Appl Pharmacol 199(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Calfee-Mason KG, Lee EY, Spear BT, Glauert HP (2008) Role of the p50 subunit of NF-kappaB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate. Food Chem Toxicol 46(6):2062–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cariello NF, Romach EH, Colton HM, Ni H, Yoon L, Falls JG, Casey W, Creech D, Anderson SP, Benavides GR, Hoivik DJ, Brown R, Miller RT (2005) Gene expression profiling of the PPAR-alpha agonist ciprofibrate in the cynomolgus monkey liver. Toxicol Sci 88(1):250–264

    Article  CAS  PubMed  Google Scholar 

  • Cattley RC, Popp JA (1989) Differences between the promoting activities of the peroxisome proliferator WY-14,643 and phenobarbital in rat liver. Cancer Res 49(12):3246–3251

    CAS  PubMed  Google Scholar 

  • Cattley RC, Conway JG, Popp JA (1987) Association of persistent peroxisome proliferation and oxidative injury with hepatocarcinogenicity in female F-344 rats fed di(2-ethylhexyl)phthalate for 2 years. Cancer Lett 38(1–2):15–22

    Article  CAS  PubMed  Google Scholar 

  • Cattley RC, Marsman DS, Popp JA (1991) Age-related susceptibility to the carcinogenic effect of the peroxisome proliferatorWY14,643 in rat liver. Carcinogenesis 12:469–473

    Article  CAS  PubMed  Google Scholar 

  • Cattley RC, DeLuca J, Elcombe C, Fenner-Crisp P, Lake BG, Marsman DS, Pastoor TA, Popp JA, Robinson DE, Schwetz B, Tugwood J, Wahli W (1998) Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul Toxicol Pharmacol 27:47–60

    Article  CAS  Google Scholar 

  • Chan E, Tan CS, Deurenberg-Yap M, Chia KS, Chew SK, Tai ES (2006) The V227A polymorphism at the PPARΑ locus is associated with serum lipid concentrations and modulates the association between dietary polyunsaturated fatty acid intake and serum high density lipoprotein concentrations in Chinese women. Atherosclerosis 187(2):309–315

    Article  CAS  PubMed  Google Scholar 

  • Chang CK, Llanes S, Schumer W (1997) Effect of dexamethasone on NF-kB activation, tumor necrosis factor formation, and glucose dyshomeostasis in septic rats. J Surg Res 72(2):141–145

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Huang CY, Wilson MW, Lay LT, Robertson LW, Chow CK, Glauert HP (1994) Effect of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cell proliferation and toxicity in Sprague Dawley rats. Carcinogenesis 15(12):2847–2850

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE (2000) Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol Sci 57(2):338–344

    Article  CAS  PubMed  Google Scholar 

  • Cherkaoui Malki M, Lone YC, Corral-Debrinski M, Latruffe N (1990) Differential proto-oncogene mRNA induction from rats treated with peroxisome proliferators. Biochem Biophys Res Commun 173(3):855–861

    Article  CAS  PubMed  Google Scholar 

  • Cheung C, Akiyama TE, Ward JM, Nicol CJ, Feigenbaum L, Vinson C, Gonzalez FJ (2004) Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res 64(11):3849–3854

    Article  CAS  PubMed  Google Scholar 

  • Chinje E, Kentish P, Jarnot B, George M, Gibson G (1994) Induction of the CYP4A subfamily by perfluorodecanoic acid: the rat and the guinea pig as susceptible and non-susceptible species. Toxicol Lett 71(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AI, Chahal S, Bell AR, Tomlinson SR, Roberts RA, Salter AM, Bell DR (2000) Species differences in peroxisome proliferation; mechanisms and relevance. Mutat Res 448(2):201–212

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AI, Sims HM, Horley NJ, Roberts RA, Tomlinson SR, Salter AM, Bruce M, Shaw PN, Kendall D, Barrett DA, Bell DR (2004) Molecular analysis of peroxisome proliferation in the hamster. Toxicol Appl Pharmacol 197(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Christensen JG, Gonzales AJ, Cattley RC, Goldsworthy TL (1998) Regulation of apoptosis in mouse hepatocytes and alteration of apoptosis by nongenotoxic carcinogens. Cell Growth Differ 9(9):815–825

    CAS  PubMed  Google Scholar 

  • Cohen SM, Meek ME, Klaunig JE, Patton DE, Fenner-Crisp PA (2003) The human relevance of information on carcinogenic modes of action: overview. Crit Rev Toxicol 33(6):581–589

    Article  PubMed  Google Scholar 

  • Cohen SM, Klaunig J, Meek ME, Hill RN, Pastoor T, Lehman-McKeeman L, Bucher J, Longfellow DG, Seed J, Dellarco V, Fenner-Crisp P, Patton D (2004) Evaluating the human relevance of chemically induced animal tumors. Toxicol Sci 78(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Committee of Principal Investigators (1978) A cooperative trial in the primary prevention of ischemic heart disease using clofibrate. Br Heart J 40:1069–1118

    Article  Google Scholar 

  • Conway JG, Tomaszewski KE, Olson MJ, Cattley RC, Marsman DS, Popp JA (1989) Relationship of oxidative damage to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and WY-14,643. Carcinogenesis 10(3):513–519

    Article  CAS  PubMed  Google Scholar 

  • Cornu-Chagnon MC, Dupont H, Edgar A (1995) Fenofibrate: metabolism and species differences for peroxisome proliferation in cultured hepatocytes. Fundam Appl Toxicol 26:63–74

    Article  CAS  PubMed  Google Scholar 

  • Corton JC (2008) Evaluation of the role of peroxisome proliferator-activated receptor alpha (PPARα in mouse liver tumor induction by trichloroethylene and metabolites. Crit Rev Toxicol 38(10):857–875

    Article  CAS  PubMed  Google Scholar 

  • Corton JC (2010) Mode of Action Analysis and Human Relevance of Liver Tumors Induced by PPARα Activation. In: Hsu Ching-Hung, Stedeford Todd (eds) Cancer risk assessment: chemical carcinogenesis from biology to standards quantification. Wiley, Hoboken

    Google Scholar 

  • Corton JC, Lapinskas PJ (2005) Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol Sci 83(1):4–17

    Article  CAS  PubMed  Google Scholar 

  • Corton JC, Anderson SP, Stauber A (2000) Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol 40:491–518

    Article  CAS  PubMed  Google Scholar 

  • Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RA, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM (2004) Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 279(44):46204–46212

    Article  CAS  PubMed  Google Scholar 

  • Corton JC, Cunningham ML, Hummer BT, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L, Seed J, Klaunig JE (2014) Mode of action framework analysis for receptor-mediated toxicity: the peroxisome proliferatoractivated receptor alpha (PPARα) as a case study. Crit Rev Toxicol 44(1):1–49

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ML (2007) Toxicity studies of WY-14,643 (CAS No. 50892-23-4) administered in feed to male Sprague-Dawley rats, B6C3F1 mice, and Syrian hamsters. Toxic Rep Ser 62:1–136

    Google Scholar 

  • Cunningham ML, Collins BJ, Hejtmancik MR, Herbert RA, Travlos GS, Vallant MK, Stout MD (2010) Effects of the PPARα agonist and widely used antihyperlipidemic drug gemfibrozil on hepatic toxicity and lipid metabolism. PPAR Res (pii: 681963)

  • Currie RA, Bombail V, Oliver JD, Moore DJ, Lim FL, Gwilliam V, Kimber I, Chipman K, Moggs JG, Orphanides G (2005) Gene ontology mapping as an unbiased method for identifying molecular pathways and processes affected by toxicant exposure: application to acute effects caused by the rodent non-genotoxic carcinogen diethylhexylphthalate. Toxicol Sci 86(2):453–469

    Article  CAS  PubMed  Google Scholar 

  • Czaja MJ (2007) Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis 27(4):378–389

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Wood CR, Lin MT, Starkov AA, Lau C, Wallace KB, Corton JC, Abbott BD (2017) Perfluoroalkyl acids-induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology 1(378):37–52

    Article  CAS  Google Scholar 

  • David RM, Moore MR, Cifone MA, Finney DC, Guest D (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di(2-ethylhexyl)phthalate and the effects of recovery. Toxicol Sci 50(2):195–205

    Article  CAS  PubMed  Google Scholar 

  • David RM, Moore MR, Finney DC, Guest D (2000a) Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci 58(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • David RM, Moore MR, Finney DC, Guest D (2000b) Chronic toxicity of di(2-ethylhexyl)phthalate in rats. Toxicol Sci 55(2):433–443

    Article  CAS  PubMed  Google Scholar 

  • De Bosscher K, Vanden Berghe W, Haegeman G (2006) Cross-talk between nuclear receptors and nuclear factor kappaB. Oncogene 25(51):6868–6886

    Article  PubMed  CAS  Google Scholar 

  • de Duve C (1996) The peroxisome in retrospect. Ann N Y Acad Sci 804:1–10

    Article  PubMed  Google Scholar 

  • de la Iglesia FA, Lewis JE, Buchanan RA, Marcus EL, McMahon G (1982) Light and electron microscopy of liver in hyperlipoproteinemic patients under long-term gemfibrozil treatment. Atherosclerosis 43:19–37

    Article  Google Scholar 

  • De Minicis S, Bataller R, Brenner DA (2006) NADPH oxidase in the liver: defensive, offensive, or fibrogenic? Gastroenterology 131(1):272–275

    Article  PubMed  CAS  Google Scholar 

  • DeAngelo AB, Daniel FB, McMillan L, Wernsing P, Savage RE Jr (1989) Species and strain sensitivity to the induction of peroxisome proliferation by chloroacetic acids. Toxicol Appl Pharmacol 101(2):285–298

    Article  CAS  PubMed  Google Scholar 

  • DeAngelo AB, Daniel FB, Most BM, Olson GR (1997) Failure of monochloroacetic acid and trichloroacetic acid administered in the drinking water to produce liver cancer in male F344/N rats. J Toxicol Environ Health 52(5):425–445

    CAS  PubMed  Google Scholar 

  • Dees C, Travis C (1994) Trichloroacetate stimulation of liver DNA synthesis in male and female mice. Toxicol Lett 70(3):343–355

    Article  CAS  PubMed  Google Scholar 

  • Dostalek M, Hardy KD, Milne GL, Morrow JD, Chen C, Gonzalez FJ, Gu J, Ding X, Johnson DA, Johnson JA, Martin MV, Guengerich FP (2008) Development of oxidative stress by cytochrome P450 induction in rodents is selective for barbiturates and related to loss of pyridine nucleotide-dependent protective systems. J Biol Chem 283(25):17147–17157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doull J, Cattley R, Elcombe C, Lake BG, Swenberg J, Wilkinson C, Williams G, van Gemert M (1999) A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. Regul Toxicol Pharmacol 29:327–357

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi RS, Alvares K, Nemali MR, Subbarao V, Reddy MK, Usman MI, Rademaker AW, Reddy JK, Rao MS (1989) Comparison of the peroxisome proliferator-induced pleiotropic response in the liver of nine strains of mice. Toxicol Pathol 17(1 Pt 1):16–26

    Article  CAS  PubMed  Google Scholar 

  • Elcock FJ, Chipman JK, Roberts RA (1998) The rodent nongenotoxic hepatocarcinogen and peroxisome proliferator nafenopin inhibits intercellular communication in rat but not guinea-pig hepatocytes, perturbing S-phase but not apoptosis. Arch Toxicol 72(7):439–444

    Article  CAS  PubMed  Google Scholar 

  • Elliott BM, Elcombe CR (1987) Lack of DNA damage or lipid peroxidation measured in vivo in the rat liver following treatment with peroxisomal proliferators. Carcinogenesis 8(9):1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Eveillard A, Lasserre F, de Tayrac M, Polizzi A, Claus S, Canlet C, Mselli-Lakhal L, Gotardi G, Paris A, Guillou H, Martin PG, Pineau T (2009a) Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicol Appl Pharmacol 236(3):282–292

    Article  CAS  PubMed  Google Scholar 

  • Eveillard A, Mselli-Lakhal L, Mogha A, Lasserre F, Polizzi A, Pascussi JM, Guillou H, Martin PG, Pineau T (2009b) Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem Pharmacol 77(11):1735–1746

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    Article  CAS  PubMed  Google Scholar 

  • Fischer JG, Glauert HP, Yin T, Sweeney-Reeves ML, Larmonier N, Black MC (2002) Moderate iron overload enhances lipid peroxidation in livers of rats, but does not affect NF-kappaB activation induced by the peroxisome proliferator, WY-14,643. J Nutr 132(9):2525–2531

    CAS  PubMed  Google Scholar 

  • Fitzgerald JE, Sanyer JL, Schardein JL, Lake RS, McGuire EJ, de la Iglesia FA (1981) Carcinogen bioassay and mutagenicity studies with the hypolipidemic agent gemfibrozil. J Natl Cancer Inst 67(5):1105–1116

    CAS  PubMed  Google Scholar 

  • Flavell DM, Pineda Torra I, Jamshidi Y, Evans D, Diamond JR, Elkeles RS, Bujac SR, Miller G, Talmud PJ, Staels B, Humphries SE (2000) Variation in the PPARα gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia 43(5):673–680

    Article  CAS  PubMed  Google Scholar 

  • Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P, Huttunen JK, Kaitaniemi P, Koskinen P, Manninen V et al (1987) Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317(20):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Gariot P, Barrat E, Mejean L, Pointel JP, Drouin P, Debry G (1983) Fenofibrate and human liver. Lack of proliferation of peroxisomes. Arch Toxicol 53(2):151–163

    CAS  PubMed  Google Scholar 

  • Gariot P, Barrat E, Drouin P, Genton P, Pointel JP, Foliguet B, Kolopp M, Debry G (1987) Morphometric study of human hepatic cell modifications induced by fenofibrate. Metabolism 36:203–210

    Article  CAS  PubMed  Google Scholar 

  • Gentry PR, Clewell HJ 3rd, Clewell R, Campbell J, Van Landingham C, Shipp AM (2011) Challenges in the application of quantitative approaches in risk assessment: a case study with di-(2-ethylhexyl)phthalate. Crit Rev Toxicol 41(Suppl 2):1–72

    Article  CAS  PubMed  Google Scholar 

  • Gervois P, Torra IP, Chinetti G, Grotzinger T, Dubois G, Fruchart JC, Fruchart-Najib J, Leitersdorf E, Staels B (1999) A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol 13:1535–1549

    CAS  PubMed  Google Scholar 

  • Geter DR, Bhat VS, Gollapudi BB, Sura R, Hester SD (2014) Dose-response modeling of early molecular and cellular key events in the CAR-mediated hepatocarcinogenesis pathway. Toxicol Sci 138(2):425–445

    Article  CAS  PubMed  Google Scholar 

  • Gill JH, Brickell P, Dive C, Roberts RA (1998a) The rodent non-genotoxic hepatocarcinogen nafenopin suppresses apoptosis preferentially in non-cycling hepatocytes but also elevates CDK4, a cell cycle progression factor. Carcinogenesis 19(10):1743–1747

    Article  CAS  PubMed  Google Scholar 

  • Gill JH, Roberts RA, Dive C (1998b) The nongenotoxic hepatocarcinogen nafenopin suppresses rodent hepatocyte apoptosis induced by TGFb1, DNA damage and FAS. Carcinogenesis 19:299–304

    Article  CAS  PubMed  Google Scholar 

  • Glauert HP, Beaty MM, Clark TD, Greenwell WS, Tatum V, Chen LC, Borges T, Clark TL, Srinivasan SR, Chow CK (1990) Effect of dietary vitamin E on the development of altered hepatic foci and hepatic tumors induced by the peroxisome proliferator ciprofibrate. J Cancer Res Clin Oncol 116(4):351–356

    Article  CAS  PubMed  Google Scholar 

  • Glauert HP, Srinivasan S, Tatum VL, Chen LC, Saxon DM, Lay LT, Borges T, Baker M, Chen LH, Robertson LW et al (1992) Effects of the peroxisome proliferators ciprofibrate and perfluorodecanoic acid on hepatic cellular antioxidants and lipid peroxidation in rats. Biochem Pharmacol 43(6):1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Glauert HP, Eyigor A, Tharappel JC, Cooper S, Lee EY, Spear BT (2006) Inhibition of hepatocarcinogenesis by the deletion of the p50 subunit of NF-kappaB in mice administered the peroxisome proliferator WY-14,643. Toxicol Sci 90(2):331–336

    Article  CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Goel SK, Lalwani ND, Reddy JK (1986) Peroxisome proliferation and lipid peroxidation in rat liver. Cancer Res 46(3):1324–1330

    CAS  PubMed  Google Scholar 

  • Gold LS, Manley NB, Slone TH, Rohrbach L, Garfinkel GB (2005) Supplement to the Carcinogenic Potency Database (CPDB): results of animal bioassays published in the general literature through 1997 and by the National Toxicology Program in 1997–1998. Toxicol Sci 85(2):747–808

    Article  CAS  PubMed  Google Scholar 

  • Goll V, Alexandre E, Viollon-Abadie C, Nicod L, Jaeck D, Richert L (1999) Comparison of the effects of various peroxisome proliferators on peroxisomal enzyme activities, DNA synthesis, and apoptosis in rat and human hepatocyte cultures. Toxicol Appl Pharmacol 160:21–32

    Article  CAS  PubMed  Google Scholar 

  • Gottlicher M, Widmark E, Li Q, Gustafsson JA (1992) Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA 89(10):4653–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasl-Kraupp B, Huber W, Just W, Gibson G, Schulte-Hermann R (1993a) Enhancement of peroxisomal enzymes, cytochrome P-452 and DNA synthesis in putative preneoplastic foci of rat liver treated with the peroxisome proliferator nafenopin. Carcinogenesis 14(5):1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Grasl-Kraupp B, Huber W, Timmermann-Trosiener I, Schulte-Hermann R (1993b) Peroxisomal enzyme induction uncoupled from enhanced DNA synthesis in putative preneoplastic liver foci of rats treated with a single dose of the peroxisome proliferator nafenopin. Carcinogenesis 14:2435–2437

    Article  CAS  PubMed  Google Scholar 

  • Grasl-Kraupp B, Waldhor T, Huber W, Schulte-Hermann R (1993c) Glutathione S-transferase isoenzyme patterns in different subtypes of enzyme-altered rat liver foci treated with the peroxisome proliferator nafenopin or with phenobarbital. Carcinogenesis 14(11):2407–2412

    Article  CAS  PubMed  Google Scholar 

  • Grasl-Kraupp B, Ruttkay-Nedecky B, Mullauer L, Taper H, Huber W, Bursch W, Schulte- Hermann R (1997) Inherent increase of apoptosis in liver tumors: implications for carcinogenesis and tumor regression. Hepatology 25:906–912

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov SI, Karin M (2011) Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 70(Suppl 1):i104–i108

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Sarkar J, Suino-Powell K, Xu Y, Matsumoto K, Jia Y, Yu S, Khare S, Haldar K, Rao MS, Foreman JE, Monga SP, Peters JM, Xu HE, Reddy JK (2007) Induction of nuclear translocation of constitutive androstane receptor by peroxisome proliferator-activated receptor alpha synthetic ligands in mouse liver. J Biol Chem 282:36766–36776

    Article  CAS  PubMed  Google Scholar 

  • Guyton KZ, Chiu WA, Bateson TF, Jinot J, Scott CS, Brown RC, Caldwell JC (2009) A reexamination of the PPAR-α activation mode of action as a basis for assessing human cancer risks of environmental contaminants. Environ Health Perspect 117(11):1664–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann M, Georgiev O, Schaffner (1997) The VP16 paradox: herpes simplex virus VP16 contains a long-range activation domain but within the natural multiprotein complex activates only from promoter-proximal positions. J Virol 71(8):5952–5962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handler JA, Seed CB, Bradford BU, Thurman RG (1992) Induction of peroxisomes by treatment with perfluorooctanoate does not increase rates of H2O2 production in intact liver. Toxicol Lett 60(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Hanefeld M, Kemmer C, Leonhardt W, Kunze KD, Jaross W, Haller H (1980) Effects of p-chlorophenoxyisobutyric acid (CPIB) on the human liver. Atherosclerosis 36(2):159–172

    Article  CAS  PubMed  Google Scholar 

  • Hanefeld M, Kemmer C, Kadner E (1983) Relationship between morphological changes and lipid lowering action of p-chlorphenoxyisobutyric acid (CPIB) on hepatic mitochondria and peroxisomes in man. Atherosclerosis 46:239–246

    Article  CAS  PubMed  Google Scholar 

  • Hanselman JC, Vartanian MA, Koester BP, Gray SA, Essenburg AD, Rea TJ, Bisgaier CL, Pape ME (2001) Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators. Mol Cell Biochem 217(1–2):91–97

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274(27):19228–19236

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, Roberts RA (2000) The nongenotoxic hepatocarcinogens diethylhexylphthalate and methylclofenapate induce DNA synthesis preferentially in octoploid rat hepatocytes. Toxicol Pathol 28(4):503–509

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, James NH, Soames AR, Roberts RA (1998) The peroxisome proliferator nafenopin does not suppress hepatocyte apoptosis in guinea-pig liver in vivo nor in human hepatocytes in vitro. Arch Toxicol 72(12):777–783

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, James NH, Macdonald N, West D, Chevalier S, Cosulich SC, Roberts RA (1999) Suppression of apoptosis and induction of DNA synthesis in vitro by the phthalate plasticizers monoethylhexylphthalate (MEHP) and diisononylphthalate (DINP): a comparison of rat and human hepatocytes in vitro. Arch Toxicol 73(8–9):451–456

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, James NH, Macdonald N, Gonzalez FJ, Peters JM, Roberts RA (2000a) Suppression of mouse hepatocyte apoptosis by peroxisome proliferators: role of PPARα and TNFαlpha. Mutat Res 448(2):193–200

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, James NH, Macdonald N, Soames AR, Roberts RA (2000b) Species differences in response to diethylhexylphthalate: suppression of apoptosis, induction of DNA synthesis and peroxisome proliferator activated receptor alpha-mediated gene expression. Arch Toxicol 74(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Hasmall SC, West DA, Olsen K, Roberts RA (2000c) Role of hepatic non-parenchymal cells in the response of rat hepatocytes to the peroxisome proliferator nafenopin in vitro. Carcinogenesis 21(12):2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Ito Y, Yamagishi N, Yanagiba Y, Tamada H, Wang D, Ramdhan DH, Naito H, Harada Y, Kamijima M, Gonzales FJ, Nakajima T (2011) Hepatic peroxisome proliferator-activated receptor α may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology 289(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Hays T, Rusyn I, Burns AM, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM (2005) Role of peroxisome proliferator-activated receptor-alpha (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis 26(1):219–227

    Article  CAS  PubMed  Google Scholar 

  • Henkler F, Brinkmann J, Luch A (2010) The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel) 2(2):376–396

    Article  CAS  Google Scholar 

  • Herren-Freund SL, Pereira MA, Khoury MD, Olson G (1987) The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid, in mouse liver. Toxicol Appl Pharmacol 90(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Hinton RH, Mitchell FE, Mann A, Chescoe D, Price SC, Nunn A, Grasso P, Bridges JW (1986) Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect 70:195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoivik DJ, Qualls CW Jr, Mirabile RC, Cariello NF, Kimbrough CL, Colton HM, Anderson SP, Santostefano MJ, Morgan RJ, Dahl RR, Brown AR, Zhao Z, Mudd PN Jr, Oliver WB Jr, Brown HR, Miller RT (2004) Fibrates induce hepatic peroxisome and mitochondrial proliferation without overt evidence of cellular proliferation and oxidative stress in cynomolgus monkeys. Carcinogenesis 25(9):1757–1769

    Article  CAS  PubMed  Google Scholar 

  • Holden P, Hasmall S, James N, West D, Brindle R, Gonzalez F, Peters J, Roberts R (2000) Tumour necrosis factor a (TNFα): role in suppression of apoptosis by peroxisome proliferators. Cell Mol Biol 46:29–39

    CAS  PubMed  Google Scholar 

  • Howroyd P, Swanson C, Dunn C, Cattley RC, Corton JC (2004) Decreased longevity and enhancement of age-dependent lesions in mice lacking the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Toxicol Pathol 32(5):591–599

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LL, Shinozuka H, Weinstein IB (1991) Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator. Br J Cancer 64(5):815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber W, Kraupp-Grasl B, Esterbauer H, Schulte-Hermann R (1991) Role of oxidative stress in age dependent hepatocarcinogenesis by the peroxisome proliferator nafenopin in the rat. Cancer Res 51(7):1789–1792

    CAS  PubMed  Google Scholar 

  • Huber WW, Grasl-Kraupp B, Stekel H, Gschwentner C, Lang H, Schulte-Hermann R (1997) Inhibition instead of enhancement of lipid peroxidation by pretreatment with the carcinogenic peroxisome proliferator nafenopin in rat liver exposed to a high single dose of corn oil. Arch Toxicol 71(9):575–581

    Article  CAS  PubMed  Google Scholar 

  • Huttunen JK, Heinonen OP, Manninen V, Koskinen P, Hakulinen T, Teppo L, Manttari M, Frick MH (1994) The Helsinki Heart Study: an 8.5-year safety and mortality follow-up. J Intern Med 235(1):31–39

    Article  CAS  PubMed  Google Scholar 

  • IARC (1996) Some pharmaceutical drugs. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. IARC Press, Lyon, pp 391–426

    Google Scholar 

  • Isenberg JS, Kolaja KL, Ayoubi SA, Watkins JB 3rd, Klaunig JE (1997) Inhibition of WY 14,643-induced hepatic lesion growth in mice by rotenone. Carcinogenesis 18:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Kamendulis LM, Smith JH, Ackley DC, Pugh G Jr, Lington AW, Klaunig JE (2000) Effects of Di-2-ethylhexyl phthalate (DEHP) on gap-junctional intercellular communication (GJIC), DNA synthesis, and peroxisomal beta oxidation (PBOX) in rat, mouse, and hamster liver. Toxicol Sci 56(1):73–85

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Kamendulis LM, Ackley DC, Smith JH, Pugh G Jr, Lington AW, McKee RH, Klaunig JE (2001) Reversibility and persistence of di-2-ethylhexyl phthalate (DEHP)- and phenobarbital-induced hepatocellular changes in rodents. Toxicol Sci 64(2):192–199

    Article  CAS  PubMed  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yamanoshita O, Asaeda N, Tagawa Y, Lee CH, Aoyama T, Ichihara G, Furuhashi K, Kamijima M, Gonzalez FJ, Nakajima T (2007) Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J Occup Health 49(3):172–182

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Nakamura T, Yanagiba Y, Ramdhan DH, Yamagishi N, Naito H, Kamijima M, Gonzalez FJ, Nakajima T (2012) Plasticizers may activate human hepatic peroxisome proliferator-activated receptor α less than that of a mouse but may activate constitutive androstane receptor in liver. PPAR Res 2012:201284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • James NH, Roberts RA (1996a) Species differences in response to peroxisome proliferators correlate in vitro with induction of DNA synthesis rather than suppression of apoptosis. Carcinogenesis 17(8):1623–1632

    Article  CAS  PubMed  Google Scholar 

  • James NH, Roberts RA (1996b) Species differences in response to peroxisome proliferators correlate in vitro with induction of DNA synthesis rather than suppression of apoptosis. Carcinogenesis 17(8):1623–1632

    Article  CAS  PubMed  Google Scholar 

  • James NH, Gill JH, Brindle R, Woodyatt NJ, Macdonald N, Rolfe M, Hasmall SC, Tugwood JD, Holden PR, Roberts RA (1998a) Peroxisome proliferator-activated receptor (PPAR) alpha-regulated growth responses and their importance to hepatocarcinogenesis. Toxicol Lett 102–103:91–96

    Article  PubMed  Google Scholar 

  • James NH, Soames AR, Roberts RA (1998b) Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphthalate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB). Arch Toxicol 72:784–790

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Qi C, Zhang Z, Hashimoto T, Rao MS, Huyghe S, Suzuki Y, Van Veldhoven PP, Baes M, Reddy JK (2003) Overexpression of peroxisome proliferator-activated receptor-alpha (PPARα)-regulated genes in liver in the absence of peroxisome proliferation in mice deficient in both L- and D-forms of enoyl-CoA hydratase/dehydrogenase enzymes of peroxisomal beta-oxidation system. J Biol Chem 278(47):47232–47239

    Article  CAS  PubMed  Google Scholar 

  • Jolly RA, Goldstein KM, Wei T, Gao H, Chen P, Huang S, Colet JM, Ryan TP, Thomas CE, Estrem ST (2005) Pooling samples within microarray studies: a comparative analysis of rat liver transcription response to prototypical toxicants. Physiol Genomics 22(3):346–355

    Article  CAS  PubMed  Google Scholar 

  • Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118(4):485–492

    Article  CAS  PubMed  Google Scholar 

  • Julien E, Boobis AR, Olin SS (2009) The key events dose-response framework: a cross-disciplinary mode-of-action based approach to examining dose-response and thresholds. Crit Rev Food Sci Nutr 49(8):682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436

    Article  CAS  PubMed  Google Scholar 

  • Kawashima Y, Suzuki S, Kozuka H, Sato M, Suzuki Y (1994) Effects of prolonged administration of perfluorooctanoic acid on hepatic activities of enzymes which detoxify peroxide and xenobiotic in the rat. Toxicology 93(2–3):85–97

    Article  CAS  PubMed  Google Scholar 

  • Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci 90(6):2160–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller H, Devchand PR, Perroud M, Wahli W (1997) PPAR alpha structure-function relationships derived from species-specific differences in responsiveness to hypolipidemic agents. Biol Chem 378:651–655

    Article  CAS  PubMed  Google Scholar 

  • Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3(4):354–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten S et al (1999) Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. J Clin Inv 103(11):1489–1498

    Article  CAS  Google Scholar 

  • Keshava N, Caldwell JC (2006) Key issues in the role of peroxisome proliferator-activated receptor agonism and cell signaling in trichloroethylene toxicity. Environ Health Perspect 114(9):1464–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler W, Numtip W, Grote K, Csanády GA, Chahoud I, Filser JG (2004) Blood burden of di(2-ethylhexyl) phthalate and its primary metabolite mono(2-ethylhexyl) phthalate in pregnant and nonpregnant rats and marmosets. Toxicol Appl Pharmacol 195(2):142–153

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Song KS, Park GH, Chang SH, Kim HW, Park JH, Jin H, Eu KJ, Cho HS, Kang G, Kim YC, Cho MH (2004) B6C3F1 mice exposed to ozone with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and/or dibutyl phthalate showed toxicities through alterations of NF-kappaB, AP-1, Nrf2, and osteopontin. J Vet Sci 5(2):131–137

    PubMed  Google Scholar 

  • Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARα agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33(6):655–780

    Article  CAS  PubMed  Google Scholar 

  • Kluwe WM, McConnell EE, Huff JE, Haseman JK, Douglas JF, Hartwell WV (1982) carcinogenicity testing of phthalate esters and related compounds. Environ Health Perspect 45(129–133):1982

    Google Scholar 

  • Kluwe WM, Huff JE, Matthews HB, Irwin R, Haseman JK (1985) Comparative chronic toxicities and carcinogenic potentials of 2-ethylhexyl- containing compounds in rats and mice. Carcinogenesis 6(11):1577–1583

    Article  CAS  PubMed  Google Scholar 

  • Kolaja KL, Stevenson DE, Walborg EF Jr, Klaunig JE (1996a) Dose dependence of phenobarbital promotion of preneoplastic hepatic lesions in F344 rats and B6C3F1 mice: effects on DNA synthesis and apoptosis. Carcinogenesis 17(5):947–954

    Article  CAS  PubMed  Google Scholar 

  • Kolaja KL, Stevenson DE, Walborg EF Jr, Klaunig JE (1996b) Reversibility of promoter induced hepatic focal lesion growth in mice. Carcinogenesis 17(7):1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Kreamer BL, Staecker JL, Sawada N, Sattler GL, Hsia MT, Pitot HC (1986) Use of a low-speed, iso-density percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations. Vitro Cell Dev Biol 22(4):201–211

    Article  CAS  Google Scholar 

  • Lacquemant C, Lepretre F, Pineda Torra I, Manraj M, Charpentier G, Ruiz J, Staels B, Froguel P (2000) Mutation screening of the PPARα gene in type 2 diabetes associated with coronary heart disease. Diabetes Metab 26(5):393–401

    CAS  PubMed  Google Scholar 

  • Lake BG, Kozlen SL, Evans JG, Gray TJ, Young PJ, Gangolli SD (1987) Effect of prolonged administration of clofibric acid and di-(2-ethylhexyl)phthalate on hepatic enzyme activities and lipid peroxidation in the rat. Toxicology 44(2):213–228

    Article  CAS  PubMed  Google Scholar 

  • Lake BG, Evans JG, Gray TJ, Körösi SA, North CJ (1989a) Comparative studies on nafenopin-induced hepatic peroxisome proliferation in the rat, Syrian hamster, guinea pig, and marmoset. Toxicol Appl Pharmacol 99(1):148–160

    Article  CAS  PubMed  Google Scholar 

  • Lake BG, Gray TJ, Körösi SA, Walters DG (1989b) Nafenopin, a peroxisome proliferator, depletes hepatic vitamin E content and elevates plasma oxidised glutathione levels in rats. Toxicol Lett 45(2–3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Lake BG, Evans JG, Cunninghame ME, Price RJ (1993) Comparison of the hepatic effects of nafenopin and WY-14,643 on peroxisome proliferation and cell replication in the rat and Syrian hamster. Environ Health Perspect 101(Suppl 5):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake BG, Rumsby PC, Price RJ, Cunninghame ME (2000) Species differences in hepatic peroxisome proliferation, cell replication and transforming growth factor-beta1 gene expression in the rat, Syrian hamster and guinea pig. Mutat Res 448(2):213–225

    Article  CAS  PubMed  Google Scholar 

  • Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC, Corton JC (2005) Role of PPARαlpha in mediating the effects of phthalates and metabolites in the liver. Toxicology 207(1):149–163

    Article  CAS  PubMed  Google Scholar 

  • Laughter AR, Dunn CS, Swanson CL, Howroyd P, Cattley RC, Corton JC (2004) Role of the peroxisome proliferator-activated receptor alpha (PPARα) in responses to trichloroethylene and metabolites, trichloroacetate and dichloroacetate in mouse liver. Toxicology 203(1–3):83–98

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G (2001a) Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expression. J Biol Chem 276(34):31521–31527

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JW, Wollenberg GK, DeLuca JG (2001b) Tumor necrosis factor alpha is not required for WY14,643-induced cell proliferation. Carcinogenesis 22(3):381–386

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lim KT (2011) Plant-originated glycoprotein (24kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate. Cell Biochem Funct 29(6):496–505

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernandez-Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96(13):7473–7478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Leung LK, Glauert HP, Spear BT (1996) Treatment of rats with the peroxisome proliferator ciprofibrate results in increased liver NF-kappaB activity. Carcinogenesis 17(11):2305–2309

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Glauert HP, Spear BT (2000a) Activation of nuclear factor-kappaB by the peroxisome proliferator ciprofibrate in H4IIEC3 rat hepatoma cells and its inhibition by the antioxidants N-acetylcysteine and vitamin E. Biochem Pharmacol 59(4):427–434

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Tharappel JC, Cooper S, Glenn M, Glauert HP, Spear BT (2000b) Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol 19(2):113–120

    Article  PubMed  Google Scholar 

  • Liu MH, Li J, Shen P, Husna B, Tai ES, Yong EL (2008) A natural polymorphism in peroxisome proliferator-activated receptor-alpha hinge region attenuates transcription due to defective release of nuclear receptor corepressor from chromatin. Mol Endocrinol 22(5):1078–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM (2002) Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology 176(3):175–185

    Article  CAS  PubMed  Google Scholar 

  • Lundgren B, Meijer J, DePierre JW (1987) Induction of cytosolic and microsomal epoxide hydrolases and proliferation of peroxisomes and mitochondria in mouse liver after dietary exposure to p-chlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Biochem Pharmacol 36(6):815–821

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Stoffregen DA, Wheelock GD, Rininger JA, Babish JG (1997) Discordant hepatic expression of the cell division control enzyme p34cdc2 kinase, proliferating cell nuclear antigen, p53 tumor suppressor protein, and p21Waf1 cyclin-dependent kinase inhibitory protein after WY14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) dosing to rats. Mol Pharmacol 51(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Macdonald N, Holden PR, Roberts RA (1999) Addition of peroxisome proliferator-activated receptor alpha to guinea pig hepatocytes confers increased responsiveness to peroxisome proliferators. Cancer Res 59(19):4776–4780

    CAS  PubMed  Google Scholar 

  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990

    Article  CAS  PubMed  Google Scholar 

  • Makowska JM, Gibson GG, Bonner FW (1992) Species differences in ciprofibrate induction of hepatic cytochrome P450 4A1 and peroxisome proliferation. J Biochem Toxicol 7(3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Maloney EK, Waxman DJ (1999) Trans-activation of PPARα and PPARγamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol 161(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Marsman D (1995) NTP Technical Report on the Toxicity Studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice. Toxic Rep Ser 30:G1–G5

    Google Scholar 

  • Marsman DS, Popp JA (1994) Biological potential of basophilic hepatocellular foci and hepatic adenoma induced by the peroxisome proliferator, WY-14,643. Carcinogenesis 15(1):111–117

    Article  CAS  PubMed  Google Scholar 

  • Marsman DS, Cattley RC, Conway JG, Popp JA (1988) Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators di(2-ethylhexyl)phthalate and [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (WY-14,643) in rats. Cancer Res 48(23):6739–6744

    CAS  PubMed  Google Scholar 

  • Marsman DS, Goldsworthy TL, Popp JA (1992) Contrasting hepatocytic peroxisome proliferation, lipofuscin accumulation and cell turnover for the hepatocarcinogens WY-14,643 and clofibric acid. Carcinogenesis 13(6):1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Maruyama H, Amanuma T, Tsutsumi M, Tsujiuchi T, Horiguchi K, Denda A, Konishi Y (1994) Inhibition by catechol and di(2-ethylhexyl)phthalate of pancreatic carcinogenesis after initiation with N-nitrosobis(2-hydroxypropyl)amine in Syrian hamsters. Carcinogenesis 15(6):1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Meek ME (2008) Recent developments in frameworks to consider human relevance of hypothesized modes of action for tumours in animals. Environ Mol Mutagen 49(2):110–116

    Article  CAS  PubMed  Google Scholar 

  • Melnick RL (2001) Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of di(2- ethylhexyl)phthalate (DEHP)? Environ Health Perspect 109(5):437–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegazzi M, Carcereri-De Prati A, Suzuki H, Shinozuka H, Pibiri M, Piga R, Columbano A, Ledda-Columbano GM (1997) Liver cell proliferation induced by nafenopin and cyproterone acetate is not associated with increases in activation of transcription factors NF-kappaB and AP-1 or with expression of tumor necrosis factor alpha. Hepatology 25(3):585–592

    Article  CAS  PubMed  Google Scholar 

  • Meyer K, Lee JS, Dyck PA, Cao WQ, Rao MS, Thorgeirsson SS, Reddy JK (2003) Molecular profiling of hepatocellular carcinomas developing spontaneously in acyl-CoA oxidase deficient mice: comparison with liver tumors induced in wild-type mice by a peroxisome proliferator and a genotoxic carcinogen. Carcinogenesis 24(5):975–984

    Article  CAS  PubMed  Google Scholar 

  • Miller RT, Shah RS, Cattley RC, Popp JA (1996) The peroxisome proliferations WY-14,643 and methylclofenapate induce hepatocyte ploidy alterations and ploidy-specific DNA synthesis in F344 rats. Toxicol Appl Pharmacol 138(2):317–323

    Article  CAS  PubMed  Google Scholar 

  • Morimura K, Cheung C, Ward JM, Reddy JK, Gonzalez FJ (2006) Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor alpha to WY-14,643-induced liver tumorigenesis. Carcinogenesis 27(5):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee R, Jow L, Noonan D, McDonnell DP (1994) Human and rat peroxisome proliferator activated receptors (PPARs) demonstrate similar tissue distribution but different responsiveness to PPAR activators. J Steroid Biochem Molec Biol 51:157–166

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Ramdhan DH, Tanaka N, Naito H, Tamada H, Ito Y, Li Y, Hayashi Y, Yamagishi N, Yanagiba Y, Aoyama T, Gonzalez FJ, Nakajima T (2012) Modulation of ammonium perfluorooctanoate-induced hepatic damage by genetically different PPARα in mice. Arch Toxicol 86(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Tanaka N, Li G, Hu R, Kamijo Y, Hara A, Aoyama T (2010) Effect of bezafibrate on hepatic oxidative stress: comparison between conventional experimental doses and clinically-relevant doses in mice. Redox Rep 15(3):123–130

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ito Y, Yanagiba Y, Ramdhan DH, Kono Y, Naito H, Hayashi Y, Li Y, Aoyama T, Gonzalez FJ, Nakajima T (2009) Microgram-order ammonium perfluorooctanoate may activate mouse peroxisome proliferator-activated receptor alpha, but not human PPARalpha. Toxicology 265(1–2):27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MA, Sanchez IM, Bull RJ, Sylvester SR (1990) Increased expression of c-myc and c-Ha-ras in dichloroacetate and trichloroacetate-induced liver tumors in B6C3F1 mice. Toxicology 64(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Nemali MR, Usuda N, Reddy MK, Oyasu K, Hashimoto T, Osumi T, Rao MS, Reddy JK (1988) Comparison of constitutive and inducible levels of expression of peroxisomal beta-oxidation and catalase genes in liver and extrahepatic tissues of rat. Cancer Res 48:5316–5324

    CAS  PubMed  Google Scholar 

  • Nesfield SR, Clarke CJ, Hoivik DJ, Miller RT, Allen JS, Selinger K, Santostefano MJ (2005a) Evaluation of the carcinogenic potential of clofibrate in the rasH2 mouse. Int J Toxicol 24(5):301–311

    Article  CAS  PubMed  Google Scholar 

  • Nesfield SR, Williams TC, Hoivik DJ, Miller RT, Allen JS, Selinger K, Rickert D, Santostefano MJ (2005b) Evaluation of the carcinogenic potential of clofibrate in the neonatal mouse. Int J Toxicol. 24(5):341–348

    Article  CAS  PubMed  Google Scholar 

  • Nicholls-Grzemski FA, Belling GB, Priestly BG, Calder IC, Burcham PC (2000) Clofibrate pretreatment in mice confers resistance against hepatic lipid peroxidation. J Biochem Mol Toxicol 14(6):335–345

    Article  CAS  PubMed  Google Scholar 

  • Nilakantan V, Spear BT, Glauert HP (1998) Liver-specific catalase expression in transgenic mice inhibits NF-kappaB activation and DNA synthesis induced by the peroxisome proliferator ciprofibrate. Carcinogenesis 19(4):631–637

    Article  CAS  PubMed  Google Scholar 

  • O’Brien ML, Cunningham ML, Spear BT, Glauert HP (2001a) Effects of peroxisome proliferators on glutathione and glutathione-related enzymes in rats and hamsters. Toxicol Appl Pharmacol 171(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • O’Brien ML, Twaroski TP, Cunningham ML, Glauert HP, Spear BT (2001b) Effects of peroxisome proliferators on antioxidant enzymes and antioxidant vitamins in rats and hamsters. Toxicol Sci 60(2):271–278

    Article  PubMed  Google Scholar 

  • Oberhammer FA, Qin HM (1995) Effect of three tumour promoters on the stability of hepatocytes cultures and apoptosis after transforming growth factor-beta1. Carcinogenesis 16:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • O’Brien ML, Spear BT, Glauert HP (2005) Role of oxidative stress in peroxisome proliferator-mediated carcinogenesis. Crit Rev Toxicol 35(1):61–88

    Article  PubMed  CAS  Google Scholar 

  • Ohmura T, Ledda-Columbano GM, Piga R, Columbano A, Glemba J, Katyal SL, Locker J, Shinozuka H (1996) Hepatocyte proliferation induced by a single dose of a peroxisome proliferator. Am J Pathol 148(3):815–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oshida K, Vasani N, Jones C, Moore T, Hester S, Nesnow S, Auerbach S, Geter DR, Aleksunes LM, Thomas RS, Applegate D, Klaassen CD, Corton JC (2015) Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium. Nucl Recept Signal 27(13):e002

    Google Scholar 

  • Pacot C, Petit M, Rollin M, Behechti N, Moisant M, Deslex P, Althoff J, Lhuguenot JC, Latruffe N (1996) Difference between guinea pig and rat in the liver peroxisomal response to equivalent plasmatic level of ciprofibrate. Arch Biochem Biophys 327(1):181–188

    Article  CAS  PubMed  Google Scholar 

  • Palmer CN, Hsu MH, Griffin KJ, Raucy JL, Johnson EF (1998) Peroxisome proliferator activated receptor-alpha expression in human liver. Mol Pharmacol 53(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Parzefall W, Berger W, Kainzbauer E, Teufelhofer O, Schulte-Hermann R, Thurman RG (2001) Peroxisome proliferators do not increase DNA synthesis in purified rat hepatocytes. Carcinogenesis 22(3):519–523

    Article  CAS  PubMed  Google Scholar 

  • Pazienza V, Vinciguerra M, Mazzoccoli G (2012) PPARs signaling and cancer in the gastrointestinal system. PPAR Res 2012:560846

    PubMed  PubMed Central  Google Scholar 

  • Permadi H, Lundgren B, Andersson K, Sundberg C, DePierre JW (1993) Effects of perfluoro fatty acids on peroxisome proliferation and mitochondrial size in mouse liver: dose and time factors and effect of chain length. Xenobiotica 23(7):761–770

    Article  CAS  PubMed  Google Scholar 

  • Perrone CE, Williams GM (1998) Rodent hepatocarcinogenic peroxisome proliferators induce proliferation of rat hepatocytes in primary mixed cultures with rat liver epithelial cells. Cancer Lett 123(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Perrone CE, Shao L, Williams GM (1998) Effect of rodent hepatocarcinogenic peroxisome proliferators on fatty acyl-CoA oxidase, DNA synthesis, and apoptosis in cultured human and rat hepatocytes. Toxicol Appl Pharmacol 150:277–286

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Cattley RC, Gonzalez FJ (1997) Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator WY-14,643. Carcinogenesis 18(11):2029–2033

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Aoyama T, Cattley RC, Nobumitsu U, Hashimoto T, Gonzalez FJ (1998) Role of peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver. Carcinogenesis 19(11):1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Rusyn I, Rose ML, Gonzalez FJ, Thurman EG (2000) Peroxisome proliferator-activated receptor alpha is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis 21(4):823–826

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Cheung C, Gonzalez FJ (2005) Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand? J Mol Med 83:774–785

    Article  CAS  PubMed  Google Scholar 

  • Plant NJ, Horley NJ, Dickins M, Hasmall S, Elcombe CR, Bell DR (1998) The coordinate regulation of DNA synthesis and suppression of apoptosis is differentially regulated by the liver growth agents, phenobarbital and methylclofenapate. Carcinogenesis 19(9):1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP (2009) MicroRNA dysregulation during chemical carcinogenesis. Epigenomics. 1(2):281–290

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Tryndyak VP, Woods CG, Witt SE, Rusyn I (2007) Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor alpha. Mutat Res 625(1–2):62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polvani S, Tarocchi M, Tempesti S, Galli A (2014) Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 20(34):12062–12081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price RJ, Evans JG, Lake BG (1992) Comparison of the effects of nafenopin on hepatic peroxisome proliferation and replicative DNA synthesis in the rat and Syrian hamster. Food Chem Toxicol 30(11):937–944

    Article  CAS  PubMed  Google Scholar 

  • Pugh G Jr, Isenberg JS, Kamendulis LM, Ackley DC, Clare LJ, Brown R, Lignton AW, Smith JH, Klaunig JE (2000) Effects of diisononyl phthalate, di-2-ethylhexyl phthalate, and clofibrate in cynomolgus monkeys. Toxicol Sci 56:181–188

    Article  CAS  PubMed  Google Scholar 

  • Qu B, Halliwell B, Ong CN, Lee BL, Li QT (2000) Caloric restriction prevents oxidative damage induced by the carcinogen clofibrate in mouse liver. FEBS Lett 473(1):85–88

    Article  CAS  PubMed  Google Scholar 

  • Qu A, Shah YM, Matsubara T, Yang Q, Gonzalez FJ (2010) PPARαlpha-dependent activation of cell cycle control and DNA repair genes in hepatic nonparenchymal cells. Toxicol Sci 118(2):404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu A, Jiang C, Cai Y, Kim JH, Tanaka N, Ward JM, Shah YM, Gonzalez FJ (2014) Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J Hepatol 60(2):331–338

    Article  CAS  PubMed  Google Scholar 

  • Rakhshandehroo M, Hooiveld G, Müller M, Kersten S (2009) Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human. PLoS One 4(8):e6796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao MS, Reddy JK (1996) Hepatocarcinogenesis of peroxisome proliferators. Ann N Y Acad Sci 804:573–587

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Subbarao V (1997a) Effect of dexamethasone on ciprofibrate-induced cell proliferation and peroxisome proliferation. Fundam Appl Toxicol 35(1):78–83

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Subbarao V (1997b) The effect of deferoxamine on ciprofibrate-induced hepatocarcinogenesis in the rat. Vivo 11(6):495–498

    CAS  Google Scholar 

  • Rao MS, Subbarao V (1999) Inhibition of ciprofibrate-induced hepatocarcinogenesis in the rat by dimethylthiourea, a scavenger of hydroxyl radical. Oncol Rep 6(6):1285–1288

    CAS  PubMed  Google Scholar 

  • Rao MS, Lalwani ND, Scarpelli DG, Reddy JK (1982) The absence of gamma-glutamyl transpeptidase activity in putative preneoplastic lesions and in hepatocellular carcinomas induced in rats by the hypolipidemic peroxisome proliferator WY-14,643. Carcinogenesis 3(10):1231–1233

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Lalwani ND, Watanabe TK, Reddy JK (1984) Inhibitory effect of antioxidants ethoxyquin and 2(3)-tert-butyl-4-hydroxyanisole on hepatic tumorigenesis in rats fed ciprofibrate, a peroxisome proliferator. Cancer Res 44(3):1072–1076

    CAS  PubMed  Google Scholar 

  • Rao MS, Tatematsu M, Subbarao V, Ito N, Reddy JK (1986) Analysis of peroxisome proliferator-induced preneoplastic and neoplastic lesions of rat liver for placental form of glutathione S-transferase and gamma-glutamyltranspeptidase. Cancer Res 46(10):5287–5290

    CAS  PubMed  Google Scholar 

  • Rao MS, Usuda N, Subbarao V, Reddy JK (1987) Absence of gamma-glutamyl transpeptidase activity in neoplastic lesions induced in the liver of male F-344 rats by di-(2-ethylhexyl)phthalate, a peroxisome proliferator. Carcinogenesis 8(9):1347–1350

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Dwivedi RS, Subbarao V, Reddy JK (1988) Induction of peroxisome proliferation and hepatic tumours in C57BL/6 N mice by ciprofibrate, a hypolipidaemic compound. Br J Cancer 58(1):46–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Thangada S, Subbarao V (1991) Peroxisome proliferation in neoplastic nodules and hepatocellular carcinomas induced by ciprofibrate in the rat. Exp Pathol 41(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91(2):752–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy JK, Qureshi SA (1979) Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-alpha-p-chlorophenoxyisobutyrate (clofibrate) in rats. Br J Cancer 40(3):476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy JK, Rao MS (1977) Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator. J Natl Cancer Inst 59(6):1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Rao MS (1989) Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis. Mutat Res 214:63–68

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Rao MS, Azarnoff DL, Sell S (1979) Mitogenic and carcinogenic effects of a hypolipidemic peroxisome proliferator, [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (WY-14, 643), in rat and mouse liver. Cancer Res 39(1):152–161

    CAS  PubMed  Google Scholar 

  • Reddy JK, Lalwani ND, Reddy MK, Qureshi SA (1982) Excessive accumulation of autofluorescent lipofuscin in the liver during hepatocarcinogenesis by methyl clofenapate and other hypolipidemic peroxisome proliferators. Cancer Res 42(1):259–266

    CAS  PubMed  Google Scholar 

  • Ren H, Vallanat B, Nelson DM, Yeung LW, Guruge KS, Lam PK, Lehman-McKeeman LD, Corton JC (2009) Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol 27(3–4):266–277

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Aleksunes LM, Wood C, Vallanat B, George MH, Klaassen CD, Corton JC (2010) Characterization of peroxisome proliferator-activated receptor alpha–independent effects of PPARαlpha activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutive-activated receptor. Toxicol Sci 113(1):45–59

    Article  CAS  PubMed  Google Scholar 

  • Ries LAG, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ et al (2008) SEER Cancer Statistics Review, 1975–2005, Based on November 2007 SEER Data Submission, Posted 2008. National Cancer Institute, Bethesda, MD

    Google Scholar 

  • Rigden M, Pelletier G, Poon R, Zhu J, Auray-Blais C, Gagnon R, Kubwabo C, Kosarac I, Lalonde K, Cakmak S, Xiao B, Leingartner K, Ku KL, Bose R, Jiao J (2015) Assessment of urinary metabolite excretion after rat acute exposure to perfluorooctanoic acid and other peroxisomal proliferators. Arch Environ Contam Toxicol 68(1):148–158

    Article  CAS  PubMed  Google Scholar 

  • Rininger JA, Wheelock GD, Ma X, Babish JG (1996) Discordant expression of the cyclin-dependent kinases and cyclins in rat liver following acute administration of the hepatocarcinogen [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid (WY14,643). Biochem Pharmacol 52(11):1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Roberts RA (1999) Peroxisome proliferators: mechanisms of adverse effects in rodents and molecular basis for species differences. Arch Toxicol 73(8–9):413–418

    Article  CAS  PubMed  Google Scholar 

  • Roberts RA, James NH, Hasmall SC, Holden PR, Lambe K, Macdonald N, West D, Woodyatt NJ, Whitcome D (2000) Apoptosis and proliferation in nongenotoxic carcinogenesis: species differences and role of PPARα. Toxicol Lett 112–113:49–57

    Article  PubMed  Google Scholar 

  • Rolfe M, James NH, Roberts RA (1997) Tumour necrosis factor alpha (TNF-alpha) suppresses apoptosis and induces S-phase in rodent hepatocytes: a mediator of the hepatocarcinogenicity of peroxisome proliferators? Carcinogenesis 18:2277–2280

    Article  CAS  PubMed  Google Scholar 

  • Romagnolo DF, Zempleni J, Selmin OI (2014) Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Adv Nutr 5(4):373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose ML, Germolec D, Arteel GE, Schoonhoven R, Thurman RG (1997a) Dietary glycine prevents increases in hepatocyte proliferation caused by the peroxisome proliferator WY-14,643. Chem Res Toxicol 10(10):1198–1204

    Article  CAS  PubMed  Google Scholar 

  • Rose ML, Germolec DR, Schoonhoven R, Thurman RG (1997b) Kupffer cells are causally responsible for the mitogenic effect of peroxisome proliferators. Carcinogenesis 18(8):1453–1456

    Article  CAS  PubMed  Google Scholar 

  • Rose ML, Cattley RC, Dunn C, Wong V, Li X, Thurman RG (1999a) Dietary glycine prevents the development of liver tumors caused by the peroxisome proliferator WY-14,643. Carcinogenesis 20(11):2075–2081

    Article  CAS  PubMed  Google Scholar 

  • Rose ML, Rivera CA, Bradford BU, Graves LM, Cattley RC, Schoonhoven R, Swenberg JA, Thurman RG (1999b) Kupffer cell oxidant production is central to the mechanism of peroxisome proliferators. Carcinogenesis 20(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C (2008a) Gene profiling in the livers of wild-type and PPARα-null mice exposed to perfluorooctanoic acid. Toxicol Pathol 36(4):592–607

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, WaalKEs MP, Abbott BD, Lau C, Corton JC (2008b) Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103(1):46–56

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Schmid JR, Corton JC, Zehr RD, Das KP, Abbott BD, Lau C (2010) Gene expression profiling in wild-type and PPARα-null mice exposed to perfluorooctane sulfonate reveals PPARα-independent effects. PPAR Res (pii: 794739)

  • Rosen MB, Das KP, Wood CR, Wolf CJ, Abbott BD, Lau C (2013) Evaluation of perfluoroalkyl acid activity using primary mouse and human hepatocytes. Toxicology 7(308):129–137

    Article  CAS  Google Scholar 

  • Rosen MB, Das KP, Rooney J, Abbott B, Lau C, Corton JC (2017) PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology 387:95–107

    Article  CAS  PubMed  Google Scholar 

  • Rowland IR (1974) Metabolism of di-(2-ethylhexyl) phthalate by the contents of the alimentary tract of the rat. Food Cosmet Toxicol 12(3):293–303

    Article  CAS  PubMed  Google Scholar 

  • Rusyn I, Tsukamoto H, Thurman RG (1998) WY-14 643 rapidly activates nuclear factor kappaB in Kupffer cells before hepatocytes. Carcinogenesis 19(7):1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Rusyn I, Yamashina S, Segal BH, Schoonhoven R, Holland SM, Cattley RC, Swenberg JA, Thurman RG (2000) Oxidants from nicotinamide adenine dinucleotide phosphate oxidase are involved in triggering cell proliferation in the liver due to peroxisome proliferators. Cancer Res 60(17):4798–4803

    CAS  PubMed  Google Scholar 

  • Rusyn I, Kadiiska MB, Dikalova A, Kono H, Yin M, Tsuchiya K, Mason RP, Peters JM, Gonzalez FJ, Segal BH, Holland SM, Thurman RG (2001) Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. Mol Pharmacol 59(4):744–750

    Article  CAS  PubMed  Google Scholar 

  • Rusyn I, Peters JM, Cunningham ML (2006) Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol 36(5):459–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson LM, de Groot PJ, Hooiveld GJ, Koppen A, Kalkhoven E, Müller M, Kersten S (2008) Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One 3(2):e1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sapone A, Peters JM, Sakai S, Tomita S, Papiha SS, Dai R, Friedman FK, Gonzalez FJ (2000) The human peroxisome proliferator-activated receptor alpha gene: identification and functional characterization of two natural allelic variants. Pharmacogenetics 10(4):321–333

    Article  CAS  PubMed  Google Scholar 

  • Scatena R, Bottoni P, Vincenzoni F, Messana I, Martorana GE, Nocca G et al (2003) Bezafibrate induces a mitochondrial derangement in human cell lines: a PPAR-independent mechanism for a peroxisome proliferator. Chem Res Toxicol 16(11):1440–1447

    Article  CAS  PubMed  Google Scholar 

  • Schmezer P, Pool BL, Klein RG, Komitowski D, Schmähl D (1988) Various short-term assays and two long-term studies with the plasticizer di(2-ethylhexyl)phthalate in the Syrian golden hamster. Carcinogenesis 9(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Hermann R, Ohde G, Schuppler J, Timmermann-Trosiener I (1981) Enhanced proliferation of putative preneoplastic cells in rat liver following treatment with the tumor promoters phenobarbital, hexachlorocyclohexane, steroid compounds, and nafenopin. Cancer Res 41(6):2556–2562

    CAS  PubMed  Google Scholar 

  • Schwarz JJ, Chakraborty T, Martin J, Zhou J, Olson EN (1992) The basic region of myogenin cooperates with two transcription activation domains to induce muscle-specific transcription. Mol Cell Biol 12(1):266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo KW, Kim KB, Kim YJ, Choi JY, Lee KT, Choi KS (2004) Comparison of oxidative stress and changes of xenobiotic metabolizing enzymes induced by phthalates in rats. Food Chem Toxicol 42(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ (2007) Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 27(12):4238–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw D, Lee R, Roberts RA (2002) Species differences in response to the phthalate plasticizer monoisononylphthalate (MINP) in vitro: a comparison of rat and human hepatocytes. Arch Toxicol 76(5–6):344–350

    Article  CAS  PubMed  Google Scholar 

  • Sher T, Yi HF, McBride OW, Gonzalez FJ (1993) cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 32(21):5598–5604

    Article  CAS  PubMed  Google Scholar 

  • Shipley JM, Hurst CH, Tanaka SS, DeRoos FL, Butenhoff JL, Seacat AM, Waxman DJ (2004) trans-activation of PPARα and induction of PPARα target genes by perfluorooctane-based chemicals. Toxicol Sci 80(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB (2013) Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol 26(6):878–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith-Oliver T, Butterworth BE (1987) Correlation of the carcinogenic potential of di(2-ethylhexyl)phthalate (DEHP) with induced hyperplasia rather than with genotoxic activity. Mutat Res 188(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Soames AR, Cliffe S, Pate I, Foster JR (1999) Quantitative analysis of the lobular distribution of S-phase in rat liver following dietary administration of di(2-ethylhexyl)phthalate. Toxicol Pathol 27(4):436–440

    Article  CAS  PubMed  Google Scholar 

  • Soliman MS, Cunningham ML, Morrow JD, Roberts LJ 2nd, Badr MZ (1997) Evidence against peroxisome proliferation-induced hepatic oxidative damage. Biochem Pharmacol 53(9):1369–1374

    Article  CAS  PubMed  Google Scholar 

  • Sonich-Mullin C, Fielder R, Wiltse J, Baetcke K, Dempsey J, Fenner-Crisp P, Grant D, Hartley M, Knaap A, Kroese D, Mangelsdorf I, Meek ME, Rice JM, Younes M (2001) IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol 34(2):146–152

    Article  CAS  PubMed  Google Scholar 

  • Stanko RT, Sekas G, Isaacson IA, Clarke MR, Billiar TR, Paul HS (1995) Pyruvate inhibits clofibrate-induced hepatic peroxisomal proliferation and free radical production in rats. Metabolism 44(2):166–171

    Article  CAS  PubMed  Google Scholar 

  • Stauber AJ, Bull RJ (1997) Differences in phenotype and cell replicative behavior of hepatic tumors induced by dichloroacetate (DCA) and trichloroacetate (TCA). Toxicol Appl Pharmacol 144(2):235–246

    Article  CAS  PubMed  Google Scholar 

  • Steenland K, Fletcher T, Savitz DA (2010) Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect 118(8):1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Styles JA, Kelly MD, Pritchard NR, Elcombe CR (1990) Acute hyperplasia and peroxisome proliferation induced by methylclofenapate: a species comparison and implications for liver carcinogenesis. Prog Clin Biol Res 331:385–393

    CAS  PubMed  Google Scholar 

  • Svoboda DJ, Azarnoff DL (1979) Tumors in male rats fed ethyl chlorophenoxyisobutyrate, a hypolipidemic drug. Cancer Res 39(9):3419–3428

    CAS  PubMed  Google Scholar 

  • Tai ES, Demissie S, Cupples LA, Corella D, Wilson PW, Schaefer EJ, Ordovas JM (2002) Association between the PPARΑ L162 V polymorphism and plasma lipid levels: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol 22(5):805–810

    Article  CAS  PubMed  Google Scholar 

  • Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95(1):108–117

    Article  CAS  PubMed  Google Scholar 

  • Takashima K, Ito Y, Gonzalez FJ, Nakajima T (2008) Different mechanisms of DEHP-induced hepatocellular adenoma tumorigenesis in wild-type and PPAR alpha-null mice. J Occup Health 50(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Smith PF, Stromberg PC, Eydelloth RS, Herold EG, Grossman SJ, Frank JD, Hertzog PR, Soper KA, Keenan KP (1992) Studies of early hepatocellular proliferation and peroxisomal proliferation in Sprague Dawley rats treated with tumorigenic doses of clofibrate. Toxicol Appl Pharmacol 116(1):71–77

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T (2008a) Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122(1):124–131

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T (2008b) PPARα activation is essential for HCV core protein-induced hepatic steatosis and hepatocellular carcinoma in mice. J Clin Invest. 118(2):683–694

    PubMed  PubMed Central  Google Scholar 

  • Tateno C, Yamamoto T, Utoh R, Yamasaki C, Ishida Y, Myoken Y, Oofusa K, Okada M, Tsutsui N, Yoshizato K (2015) Chimeric mice with hepatocyte-humanized liver as an appropriate model to study human peroxisome proliferator-activated receptor-α. Toxicol Pathol 43(2):233–248

    Article  CAS  PubMed  Google Scholar 

  • Tharappel JC, Cunningham ML, Spear BT, Glauert HP (2001) Differential activation of hepatic NF-kappaB in rats and hamsters by the peroxisome proliferators WY-14,643, gemfibrozil, and dibutyl phthalate. Toxicol Sci 62(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Tharappel JC, Nalca A, Owens AB, Ghabrial L, Konz EC, Glauert HP, Spear BT (2003) Cell proliferation and apoptosis are altered in mice deficient in the NF-kappaB p50 subunit after treatment with the peroxisome proliferator ciprofibrate. Toxicol Sci 75(2):300–308

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Bayha C, Klein K, Müller S, Weiss TS, Schwab M, Zanger UM (2015) The truncated splice variant of peroxisome proliferator-activated receptor alpha, PPARα-tr, autonomously regulates proliferative and pro-inflammatory genes. BMC Cancer 30(15):488

    Article  CAS  Google Scholar 

  • Thottassery J, Winberg L, Youssef J, Cunningham ML, Badr M (1992) Regulation of perfluorooctanoic acid—induced peroxisomal enzyme activities and hepatocellular growth by adrenal hormones. Hepatology 15(2):316–322

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewski KE, Heindel SW, Jenkins WL, Melnick RL (1990) Induction of peroxisomal acyl CoA oxidase activity and lipid peroxidation in primary rat hepatocyte cultures. Toxicology 65(1–2):49–60

    Article  CAS  PubMed  Google Scholar 

  • Tucker MJ, Orton TC (1995) Comparative Toxicology of Hypolipidaemic Fibrates. Taylor and Francis, Bristol

    Google Scholar 

  • Tugwood JD, Aldridge TC, Lambe KG, Macdonald N, Woodyatt NJ (1996a) Peroxisome proliferator-activated receptors: Structures and function. Ann NY Acad Sci 804:252–265

    Article  CAS  PubMed  Google Scholar 

  • Tugwood JD, Aldridge TC, Lambe KG, Macdonald N, Woodyatt NJ (1996b) Peroxisome proliferator-activated receptors: structures and function. Ann N Y Acad Sci 804:252–265

    Article  CAS  PubMed  Google Scholar 

  • Tugwood JD, Holden PR, James NH, Prince RA, Roberts RA (1998) A PPAR alpha cDNA cloned from guinea pig liver encodes a protein with similar properties to the mouse PPAR alpha: implications for species differences in response to peroxisome proliferators. Arch Toxicol 72:169–177

    Article  CAS  PubMed  Google Scholar 

  • Urbanek-Olejnik K, Liszewska M, Winczura A, Kostka G (2016) Changes of c-Myc and DNMT1 mRNA and protein levels in the rat livers induced by dibutyl phthalate treatment. Toxicol Ind Health 32(5):801–808

    Article  CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (2005) Guidelines for carcinogen risk assessment and supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. Fed Reg 70(66):17765–17817

    Google Scholar 

  • Valles EG, Laughter AR, Dunn CS, Cannelle S, Swanson CL, Cattley RC, Corton JC (2003) Role of the peroxisome proliferator-activated receptor alpha in responses to diisononyl phthalate. Toxicology 191(2–3):211–225

    Article  CAS  PubMed  Google Scholar 

  • Van Rafelghem MJ, Mattie DR, Bruner RH, Andersen ME (1987) Pathological and hepatic ultrastructural effects of a single dose of perfluoro-n-decanoic acid in the rat, hamster, mouse, and guinea pig. Fundam Appl Toxicol 9(3):522–540

    Article  PubMed  Google Scholar 

  • Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ (2006) Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci 92(2):476–489

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Marsman DS, Popp JA (1992) Dose-related effects of the hepatocarcinogen, WY-14,643, on peroxisomes and cell replication. Fundam Appl Toxicol 18(1):149–154

    Article  CAS  PubMed  Google Scholar 

  • Walters MW, Bjork JA, Wallace KB (2009) Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats. Toxicology 264(1–2):10–15

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Hagiwara A, Anderson LM, Lindsey K, Diwan BA (1988) The chronic hepatic or renal toxicity of di(2-ethylhexyl) phthalate, acetaminophen, sodium barbital, and phenobarbital in male B6C3F1 mice: autoradiographic, immunohistochemical, and biochemical evidence for levels of DNA synthesis not associated with carcinogenesis or tumor promotion. Toxicol Appl Pharmacol 96(3):494–506

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Horie S, Yamada J, Isaji M, Nishigaki T, Naito J, Suga T (1989) Species differences in the effects of bezafibrate, a hypolipidemic agent, on hepatic peroxisome-associated enzymes. Biochem Pharmacol 38:367–371

    Article  CAS  PubMed  Google Scholar 

  • Weglarz TC, Sandgren EP (2004) Cell cross-talk mediates PPARα null hepatocyte proliferation after peroxisome proliferator exposure. Carcinogenesis 25(1):107–112

    Article  CAS  PubMed  Google Scholar 

  • West D, James N, Holden P, Brindle R, Rolfe M, Roberts R (1999) Role for tumour necrosis factor a (TNFα) receptor 1 (TNFR1) and interleukin 1 receptor (IL1R) in the suppression of apoptosis by peroxisome proliferators. Hepatology 30:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MD, Smutney OM, Check JF, Rusyn I, Schulte-Hermann R, Thurman RG (2003) Impaired Ras membrane association and activation in PPARα knockout mice after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 284(2):G302–G312

    Article  CAS  PubMed  Google Scholar 

  • Widén C, Gustafsson JA, Wikström AC (2003) Cytosolic glucocorticoid receptor interaction with nuclear factorkappa B proteins in rat liver cells. Biochem J 373(Pt 1):211–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams GM, Perrone C (1995) Mechanism based risk assessment of peroxisome proliferating rodent hepatocarcinogens. In: Reddy JK, Suga T, Mannaerts GP (eds) Peroxisomes: biology and role in toxicology and disease. Ann NY Acad Sci 804:554–572

  • Wolf DC, Moore T, Abbott BD, Rosen MB, Das KP, Zehr RD, Lindstrom AB, Strynar MJ, Lau C (2008) Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPAR-alpha knockout and wild-type mice. Toxicol Pathol 36(4):632–639

    Article  CAS  PubMed  Google Scholar 

  • Woods CG, Burns AM, Bradford BU, Ross PK, Kosyk O, Swenberg JA, Cunningham ML, Rusyn I (2007a) WY-14,643 induced cell proliferation and oxidative stress in mouse liver are independent of NADPH oxidase. Toxicol Sci 98(2):366–374

    Article  CAS  PubMed  Google Scholar 

  • Woods CG, Burns AM, Maki A, Bradford BU, Cunningham ML, Connor HD, Kadiiska MB, Mason RP, Peters JM, Rusyn I (2007b) Sustained formation of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-alpha, but not NADPH oxidase. Free Radic Biol Med 42(3):335–342

    Article  CAS  PubMed  Google Scholar 

  • Woods CG, Kosyk O, Bradford BU, Ross PK, Burns AM, Cunningham ML, Qu P, Ibrahim JG, Rusyn I (2007c) Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression. Toxicol Appl Pharmacol 225(3):267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Anderson SP, Swanson C, Bahnemann R, Voss KA, Stauber AJ, Corton JC (2006) Activation of peroxisome proliferator-activated receptor alpha enhances apoptosis in the mouse liver. Toxicol Sci 92(2):368–377

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa-Kobayashi K, Ishiguro H, Arinami T, Miyazaki R, Hamaguchi H (2002) A Val227Ala polymorphism in the peroxisome proliferator activated receptor alpha (PPARα) gene is associated with variations in serum lipid levels. J Med Genet 39(3):189–191

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Ito S, Gonzalez FJ (2007) Hepatocyte-restricted constitutive activation of PPAR alpha induces hepatoproliferation but not hepatocarcinogenesis. Carcinogenesis 28(6):1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Nagano T, Shah Y, Cheung C, Ito S, Gonzalez FJ (2008) The PPAR alpha-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPAR alpha. Toxicol Sci 101(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Yeldandi AV, Milano M, Subbarao V, Reddy JK, Rao MS (1989) Evaluation of liver cell proliferation during ciprofibrate-induced hepatocarcinogenesis. Cancer Lett 47(1–2):21–27

    Article  CAS  PubMed  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448(2):159–177

    Article  CAS  PubMed  Google Scholar 

  • Youssef J, Badr M (1998) Extraperoxisomal targets of peroxisome proliferators: mitochondrial, microsomal, and cytosolic effects. Implications for health and disease. Crit Rev Toxicol 28(1):1–33

    Article  CAS  PubMed  Google Scholar 

  • Youssef JA, Bouziane M, Badr MZ (2003) Age-dependent effects of nongenotoxic hepatocarcinogens on liver apoptosis in vivo. Mech Ageing Dev 124(3):333–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Chu ES, Zhang J, Li X, Liang Q, Chen J, Chen M, Teoh N, Farrell G, Sung JJ, Yu J (2014) Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget 5(18):8330–8340

    PubMed  PubMed Central  Google Scholar 

  • Zhou S, Wallace KB (1999) The effect of peroxisome proliferators on mitochondrial bioenergetics. Toxicol Sci 48(1):82–89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The information in this document has been subjected to review by the National Health and Environmental Effects Research Laboratory of the US EPA and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The authors thank Drs. Jennifer Foreman and Barbara Abbott for review of the manuscript, Mr. Chuck Gaul for figure production, and Ms. Emily Beukema for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christopher Corton.

Ethics declarations

Funding

The information in this document has been funded by the U.S. Environmental Protection Agency. It has been subjected to review by the National Health and Environmental Research Laboratory and approved for publication. Approval does not signify that the contents necessarily reflect the views and the policies of the Agency, nor does mention of trade names or commercial products not constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corton, J.C., Peters, J.M. & Klaunig, J.E. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol 92, 83–119 (2018). https://doi.org/10.1007/s00204-017-2094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2094-7

Keywords

Navigation