Skip to main content
Log in

Interplay between lysosomal, mitochondrial and death receptor pathways during manganese-induced apoptosis in glial cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential trace metal which plays a critical role in brain physiology by acting as a cofactor for several enzymes. However, upon overexposure, Mn preferentially accumulates within the basal ganglia leading to the development of a Parkinsonism known as Manganism. Data from our group have proved that Mn induces oxidative stress-mediated apoptosis in astrocytoma C6 cells. In the present study we described how cathepsins impact on different steps of each apoptotic cascade. Evidence obtained demonstrated that Mn generates lysosomal membrane permeabilization (LMP) and cathepsin release. Both cathepsins B (Ca-074 Me) and D (Pepstatin A) inhibitors as well as Bafilomycin A1 prevented caspases-3, -7, -8 and -9 activation, FasL upregulation, Bid cleavage, Δφm disruption and cytochrome c release. Results from in vivo studies showed that intrastriatal Mn injection increased cathepsin D levels from corpus striatum and substantia nigra pars compacta. Our results point to LMP and lysosomal cathepsins as key mediators in the apoptotic process triggered by Mn. These findings highlight the relevance of targeting the lysosomal pathway for Manganism therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alaimo A (2012) Neurotoxicidad inducida por manganeso. Vías de muerte apoptóticas y rol de la dinámica mitocondrial. Universidad de Buenos Aires

  • Alaimo A, Gorojod RM, Kotler ML (2011) The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. Neurochem Int 59:297–308

    Article  CAS  PubMed  Google Scholar 

  • Alaimo A, Gorojod RM, Miglietta EA, Villarreal A, Ramos AJ, Kotler ML (2013) Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells. Neurosci Lett 554:76–81

    Article  CAS  PubMed  Google Scholar 

  • Alaimo A, Gorojod RM, Beauquis J, Muñoz MJ, Saravia F, Kotler ML (2014) Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 9:e91848

    Article  PubMed  PubMed Central  Google Scholar 

  • Appelqvist H, Johansson AC, Linderoth E, Johansson U, Antonsson B, Steinfeld R, Kågedal K, Ollinger K (2012) Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Ann Clin Lab Sci 42:231–242

    CAS  PubMed  Google Scholar 

  • Aschner M, Dorman DC (2006) Manganese: pharmacokinetics and molecular mechanisms of brain uptake. Toxicol Rev 25:147–154

    Article  CAS  PubMed  Google Scholar 

  • Banerjee M, Sasse VA, Wang Y, Maulik M, Kar S (2015) Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience 284:360–373

    Article  CAS  PubMed  Google Scholar 

  • Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  CAS  PubMed  Google Scholar 

  • Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411

    Article  PubMed  Google Scholar 

  • Bowman AB, Kwakye GF, Herrero Hernández E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25:191–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Barnett JL, Berman SA, Li J, Quarless S, Bursztajn S, Lippa C, Nixon RA (1995) Gene expression and cellular content of cathepsin D in Alzheimer’s disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680

    Article  CAS  PubMed  Google Scholar 

  • Cirman T, Oresić K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  CAS  PubMed  Google Scholar 

  • Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, Simon HU (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erikson KM, Dobson AW, Dorman DC, Aschner M (2004) Manganese exposure and induced oxidative stress in the rat brain. Sci Total Environ 334–335:409–416

    Article  PubMed  Google Scholar 

  • Fan X, Luo G, Yang D, Ming M, Liu H, Pu P, Le W (2010) Critical role of lysosome and its associated protein cathepsin D in manganese-induced toxicity in cultured midbrain astrocyte. Neurochem Int 56:291–300

    Article  CAS  PubMed  Google Scholar 

  • Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B (2014) Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Met Integr Biometal Sci 6:921–931

    Article  CAS  Google Scholar 

  • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LE, Juknat AA, Venosa AJ, Verrengia N, Kotler ML (2008) Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family. Neurochem Int 53:408–415

    Article  CAS  PubMed  Google Scholar 

  • Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML (2015) The autophagic-lysosomal pathway determines the fate of glial cells under manganese-induced oxidative stress conditions. Free Radic Biol Med 87:237–251

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunter TE, Gavin CE, Aschner M, Gunter KK (2006) Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 27:765–776

    Article  CAS  PubMed  Google Scholar 

  • Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A (2004) S. Schütze, Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and – 3 activation. Cell Death Differ 11:550–563

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gao L, Song Y, Qin ZH, Liang Z (2016) Activated cathepsin L is associated with the switch from autophagy to apoptotic death of SH-SY5Y cells exposed to 6-hydroxydopamine. Biochem Biophys Res Commun 470:579–585

    Article  CAS  PubMed  Google Scholar 

  • Marino J, García Vior MC, Furmento VA, Blank VC, Awruch J, Roguin LP (2013) Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity. Int J Biochem Cell Biol 45:2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj NS, Vigneswaran N, Zacharias W (2006) Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J Cancer Res Clin Oncol 132:171–183

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Yang DS, Lee JH (2008) Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–599

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Kim SO, Han J (2003) Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol 23:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Rao KVR, Norenberg MD (2004) Manganese induces the mitochondrial permeability transition in cultured astrocytes. J Biol Chem 279:32333–32338

    Article  CAS  PubMed  Google Scholar 

  • Roberg K (2001) Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab Investig J Tech Methods Pathol 81:149–158

    Article  CAS  Google Scholar 

  • Serrano-Puebla A, Boya P (2016) Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 1371:30–44

    Article  PubMed  Google Scholar 

  • Suzuki H, Wada O, Inoue K, Tosaka H, Ono T (1983) Role of brain lysosomes in the development of manganese toxicity in mice. Toxicol Appl Pharmacol 71:422–429

    Article  CAS  PubMed  Google Scholar 

  • Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  • Tholey G, Ledig M, Mandel P, Sargentini L, Frivold AH, Leroy M, Grippo AA, Wedler FC (1988) Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem Res 13:45–50

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Bové J, Dehay B, Rodríguez-Muela N, Boya P (2011) Lysosomal membrane permeabilization in Parkinson disease. Autophagy 7:98–100

    Article  PubMed  Google Scholar 

  • Werneburg N, Guicciardi ME, Yin XM, Gores GJ (2004) TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287:G436–G443

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JN, Rhodes RH (1983) The distribution of cathepsin D in rat tissues determined by immunocytochemistry. Am J Anat 166:417–428

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Xu ZF, Deng Y (2009) Effect of manganese exposure on intracellular Ca2+ homeostasis and expression of NMDA receptor subunits in primary cultured neurons. Neurotoxicology 30:941–949

    Article  CAS  PubMed  Google Scholar 

  • Yelamanchili SV, Chaudhuri AD, Flynn CT, Fox HS (2011) Upregulation of cathepsin D in the caudate nucleus of primates with experimental parkinsonism. Mol Neurodegener 6:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin 41:437–445

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Antunes F, Eaton JW, Brunk UT (2003) Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem FEBS 270:3778–3786

    Article  CAS  Google Scholar 

  • Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107:156–164

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zhou H, Zhao X, Wolff DW, Tu Y, Liu H, Wei T, Yang F (2012) Phosphatidic acid mediates the targeting of tBid to induce lysosomal membrane permeabilization and apoptosis. J Lipid Res 53:2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwingmann C, Leibfritz D, Hazell AS (2003) Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 23:756–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 0356 and 0771). The authors thank Roberto Fernandez for his assistance in obtaining confocal microscopy images (IFIBYNE-CONICET, Argentina). R.M.G. and S.P.A are supported by CONICET scholarships. A.A., F.S. and M.L.K. are research members at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Kotler.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2017_1936_MOESM1_ESM.tif

Figure S1. Mn generates an increase in CatD expression levels. Cell cultures were exposed to Mn for 24h. Total cell lysates were run on SDS-PAGE. Blots were probed with anti-CatD and anti-β-Actin as a loading control (TIF 40 KB)

204_2017_1936_MOESM2_ESM.tif

Figure S2. CatD levels in the globus pallidus and the brain cortex after striatal Mn injection. Animals were injected into the striatum with 1µmol MnCl2 (left) and with saline as control (right). Rats were sacrificed 7 days post injection. Coronal slices containing the globus pallidus and the brain cortex were immunolabeled to detect CatD using DAB as the chromogen. Scale bar: 100µm (TIF 8490 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorojod, R.M., Alaimo, A., Porte Alcon, S. et al. Interplay between lysosomal, mitochondrial and death receptor pathways during manganese-induced apoptosis in glial cells. Arch Toxicol 91, 3065–3078 (2017). https://doi.org/10.1007/s00204-017-1936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1936-7

Keywords

Navigation