Skip to main content
Log in

Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Mycotoxins are secondary fungal metabolites that are capable of inducing a variety of toxic effects in animals and humans resulting from the consumption of the contaminated food. Understanding the mechanisms of the toxicities behind these mycotoxins is required to develop mechanism-based approach to counteract their toxic potential. Fumonisin B1 (FB1) is the most prevalent member of fumonisins that are a group of mycotoxins produced primarily by Fusarium verticillioides and Fusarium proliferatum. Kidney is one of the primary target organs for FB1 action. Using monkey kidney MARC-145 cells as an intro model, we found that FB1 induced caspase-independent programmed cell death accompanied with autophagy induction. Inhibition of autophagy by either chemical inhibitors or RNAi approach led to a significant reduction in cell death by FB1 exposure, indicating possible involvement of autophagy-mediated cell death in nephrotoxicity of FB1. Further mechanistic investigation revealed that activation of ERN1-MAPK8/9/10 axis played a critical role in autophagy induction and autophagy-mediated cell death by FB1 exposure. In addition, we demonstrated that disruption of sphingolipid metabolism was an apical event in FB1-induced ERN1-MAPK8/9/10-mediated autophagic cell death in MARC-145 cells. Lastly, we identified curcumin, a naturally occurring plant phenolic compound, as a possible anti-FB1 agent that can be used to protect kidney cells from FB1-induced cell death through inhibition of MAPK8/9/10 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MAPKs:

Mitogen-activated protein kinases

ERN1:

Endoplasmic reticulum to nucleus signaling 1

ER:

Endoplasmic reticulum

mTOR:

Mammalian target of rapamycin

LC3:

Microtubule-associated protein 1 light chain 3

EIF2AK3:

Eukaryotic translation initiation factor 2-alpha kinase 3

EIF2S1:

Eukaryotic translation initiation factor 2, subunit 1 alpha

DDIT3:

DNA-damage-inducible transcript 3

EIF4EBP1:

Eukaryotic translation initiation factor 4E-binding protein 1

RPS6KB1:

Ribosomal protein S6 kinase

ATG7:

Autophagy-related 7

ACTB:

Actin, beta

FB1:

Fumonisin B1

CHX:

Cyclohexmide

3-MA:

3-Methyladenine

BAF:

Bafilomycin A1

DBS:

3-Ethoxy-5,6-dibromosalicylaldehyde

Nec-1:

Necrostatin-1

TEM:

Transmission electron microscopy

siRNA:

Small interfering RNA

References

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronte E, Coppola G, Di Miceli R, Sucato V, Russo A, Novo S (2013) Role of curcumin in idiopathic pulmonary arterial hypertension treatment: a new therapeutic possibility. Med Hypotheses 81:923–926

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Tan TH (1998) Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17:173–178

    Article  CAS  PubMed  Google Scholar 

  • Corcelle E, Djerbi N, Mari M, Nebout M, Fiorini C, Fénichel P, Hofman P, Poujeol P, Mograbi B (2007) Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 3:57–59

    Article  CAS  PubMed  Google Scholar 

  • Costa S, Utan A, Cervellati R, Speroni E, Guerra MC (2007a) Catechins: natural free-radical scavengers against ochratoxin A-induced cell damage in a pig kidney cell line (LLC-PK1). Food Chem Toxicol 45:1910–1917

    Article  CAS  PubMed  Google Scholar 

  • Costa S, Utan A, Speroni E, Cervellati R, Piva G, Prandini A, Guerra MC (2007b) Carnosic acid from rosemary extracts: a potential chemoprotective agent against aflatoxin B1. An in vitro study. J Appl Toxicol 27:152–159

    Article  CAS  PubMed  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  • Desai K, Sullards MC, Allegood J, Wang E, Schmelz EM, Hartl M, Humpf HU, Liotta DC, Peng Q, Merrill AH Jr (2002) Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim Biophys Acta 1585:188–192

    Article  CAS  PubMed  Google Scholar 

  • Domijan AM, Peraica M, Vrdoljak AL, Radić B, Zlender V, Fuchs R (2007) The involvement of oxidative stress in ochratoxin A and fumonisin B1 toxicity in rats. Mol Nutr Food Res 51:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Liu H, Yao Y, Geng L, Zhang X, Jiang L, Shi B, Yang F (2014) Carnosic acid induces autophagic cell death through inhibition of the Akt/mTOR pathway in human hepatoma cells. J Appl Toxicol. doi:10.1002/jat.3049

    PubMed Central  Google Scholar 

  • Ghosh SS, Krieg R, Massey HD, Sica DA, Fakhry I, Ghosh S, Gehr TW (2009) Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. Am J Physiol Renal Physiol 302:F439–F454

    Article  Google Scholar 

  • Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Dong Y, Yin S, Zhao C, Huo Y, Fan L, Hu H (2013) Patulin induces pro-survival functions via autophagy inhibition and p62 accumulation. Cell Death Dis 4:e822. doi:10.1038/cddis.2013.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, Pan Y, Li XJ (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8:812–825

    Article  CAS  PubMed  Google Scholar 

  • Hassan AM, Mohamed SR, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA (2010) Aquilegia vulgaris L. extract counteracts oxidative stress and cytotoxicity of fumonisin in rats. Toxicon 56:8–18

    Article  CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhou T (2010) Patented techniques for detoxification of mycotoxins in feeds and food matrices. Recent Pat Food Nutr Agric 2:96–104

    Article  CAS  PubMed  Google Scholar 

  • He Q, Riley RT, Sharma RP (2001) Fumonisin-induced tumor necrosis factor-alpha expression in a porcine kidney cell line is independent of sphingoid base accumulation induced by ceramide synthase inhibition. Toxicol Appl Pharmacol 174:69–77

    Article  CAS  PubMed  Google Scholar 

  • He Q, Suzuki H, Sharma N, Sharma RP (2006) Ceramide synthase inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver. Toxicol Sci 94:388–397

    Article  CAS  PubMed  Google Scholar 

  • He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8:1811–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC (2005) Effect of ISP-1 on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 280:10284–10289

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Ye B, Dai Z, Wu X, Lu Z, Shan P, Huang W (2015) Curcumin inhibits autophagy and apoptosis in hypoxia/reoxygenation-induced myocytes. Mol Med Rep 11:4678–4684

    CAS  PubMed  Google Scholar 

  • Kim JY, Cho TJ, Woo BH, Choi KU, Lee CH, Ryu MH, Park HR (2012) Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch Oral Biol 57:1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21:336–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39:907–918

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Jeon CH, Ko G, Kim J, Sohn DH (2000) Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52:437–440

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Rumora L, Kovacić S, Rozgaj R, Cepelak I, Pepeljnjak S, Zanić Grubisić T (2002) Cytotoxic and genotoxic effects of fumonisin B1 on rabbit kidney RK13 cell line. Arch Toxicol 76:55–61

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Mizumura K, Choi AM (2014) The impact of autophagy on cell death modalities. Int J Cell Biol 2014:502676. doi:10.1155/2014/502676

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider JL, Cuervo AM (2014) Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26C:16–23

    Article  Google Scholar 

  • Seefelder W, Humpf HU, Schwerdt G, Freudinger R, Gekle M (2003) Induction of apoptosis in cultured human proximal tubule cells by fumonisins and fumonisin metabolites. Toxicol Appl Pharmacol 192:146–153

    Article  CAS  PubMed  Google Scholar 

  • Stockmann-Juvala H, Savolainen K (2008) A review of the toxic effects and mechanisms of action of fumonisin B1. Hum Exp Toxicol 27:799–809

    Article  CAS  PubMed  Google Scholar 

  • Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S (2014) ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 4:763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Chopra K (2013) Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience 244:147–158

    Article  CAS  PubMed  Google Scholar 

  • Varga J, Kocsubé S, Péteri Z, Vágvölgyi C, Tóth B (2010) Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins (Basel) 2:1718–1750

    Article  CAS  Google Scholar 

  • Voss KA, Riley RT, Norred WP, Bacon CW, Meredith FI, Howard PC, Plattner RD, Collins TF, Hansen DK, Porter JK (2001) An overview of rodent toxicities: liver and kidney effects of fumonisins and Fusarium moniliforme. Environ Health Perspect 109(Suppl 2):259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lu Q, Cheng S, Wang X, Zhang H (2013) Autophagy activity contributes to programmed cell death in Caenorhabditis elegans. Autophagy 9:1975–1982

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zheng W, Bian X, Yuan Y, Gu J, Liu X, Liu Z, Bian J (2014) Zearalenone induces apoptosis and cytoprotective autophagy in primary Leydig cells. Toxicol Lett 226(1):82–191

    Google Scholar 

  • Yamauchi Y, Izumi Y, Asakura K, Hayashi Y, Nomori H (2012) Curcumin induces autophagy in ACC-MESO-1 cells. Phytother Res 26:1779–1783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (NSFC, 31371752) and Ministry of Science and Technology of China (2012BAD33B09).

Conflict of interest

The authors have no conflicts of interest to disclosure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linghong Fan or Hongbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Guo, X., Li, J. et al. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Arch Toxicol 90, 985–996 (2016). https://doi.org/10.1007/s00204-015-1514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1514-9

Keywords

Navigation