Skip to main content

Advertisement

Log in

A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing

  • Regulatory Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Our study was performed in the context of an in vitro primary hepatic cell culture as an alternative for the in vivo cancerogenic bioassay. The 29 substances which are to be used in the in vitro primary hepatic cell culture have been tested in 2-year bioassays and a 14-day short term study. The aim of this modelling study was to simulate the concentration–time profile of the compounds when given by the oral route at the doses tested in the previous studies taking into account the percentage of the dose absorbed. The model contained seven tissue compartments with uptake from the gastrointestinal tract into the portal vein. Because the primary hepatic cell culture is metabolically competent and the primary interest was to model the concentration in the portal vein, the hepatic vein and the systemic circulation (blood) in the beginning we did not include elimination. Partitioning between blood and tissues was calculated according to a published biologically based algorithm. The substances’ kinetic profile differed according to their blood: tissue partitioning. Maximal concentrations in portal vein, hepatic vein and the blood depended mainly on the dose and the fraction absorbed which were the most critical parameters in this respect. Our study demonstrates an application of BPTK modelling for the purpose to simulate concentrations for planning the doses for an in vitro study. BPTK modelling seems to be a better approach than using data from in vitro studies on cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen DG, Pearse G, Haseman JK, Maronpot RR (2004) Prediction of rodent carcinogenesis: an evaluation of prechronic liver lesions as forecasters of liver tumors in NTP carcinogenicity studies. Toxicol Pathol 32:393–401

    Article  PubMed  CAS  Google Scholar 

  • Barratt MD, Castell JV, Chamberlain M, Combes RD, Dearden JC, Fentem JH, Gerner I, Giuliani A, Gray TJB, Livingstone DJ, Provan WML, Rutten F, Verhaar HJM, Zbinden P (1995) The integrated use of alternative approaches for predicting toxic hazard––the report and recommendations of ECVAM workshop-8. ATLA-Altern Lab Anim 23:410–429

    Google Scholar 

  • Benevenga NJ, Steele RD (1984) Adverse effects of excessive consumption of amino acids. Annu Rev Nutr 4:157–181

    Article  PubMed  CAS  Google Scholar 

  • Bitsch A, Hadjiolov N, Klöhn P-C, Bergmann O, Zwirner-Baier I, Neumann G (2000) Dose response of early effects related to tumor promotion of 2-acetylaminofluorene. Toxicol Sci 50:44–51

    Article  Google Scholar 

  • Blaauboer BJ (2010) Biokinetic modelling and in vitro-in vivo extrapolations. J Toxicol Environ Health B 13:242–252

    Article  CAS  Google Scholar 

  • Blaauboer BJ, Bayliss MK, Castell JV, Evelo CTA, Frazier JM, Groen K, Gülden M, Guillouzo A, Hissink AM, Houston BJ, Johanson G, de Jongh J, Kedderis GL, Reinhardt CA, van de Sandt JJM, Semino G (1996) The use of biokinetics and in vitro methods in toxicological risk evaluation. ATLA-Altern Lab Anim 24:473–497

    Google Scholar 

  • Bouvier d’Yoire M, Prieto P, Blaauboer BJ, Bois FY, Boobis A, Brochot C, Coecke S, Freidig A, Gundert-Remy U, Hartung T, Jacobs MN, Lavé T, Leahy DE, Lennernäs H, Loizou GD, Meek B, Pease C, Rowland M, Spendiff M, Yang J, Zeilmaker M (2007) Physiologically-based kinetic modelling (pbk modelling): meeting the 3Rs agenda: the report and recommendations of ECVAM workshop 63. ATLA-Altern Lab Anim 35:661–671

    Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    Google Scholar 

  • Byard J, Needham D (2006) Metabolism and excretion of piperonyl butoxide in the rat. Xenobiotica 36:1259–1272

    Article  PubMed  CAS  Google Scholar 

  • Calandre EP, Alferez N, Hassanein K, Azarnoff DL (1981) Methapyrilene kinetics and dynamics. Clin Pharmacol Ther 29(4):527–532

    Article  PubMed  CAS  Google Scholar 

  • ChemSilico (2010) http://www.chemsilico.com. Accessed 15 June 2010

  • ChemSpider (2010) http://www.chemspider.com. Accessed 15 June 2010

  • Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM (2005) Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos 33:1877–1885

    PubMed  CAS  Google Scholar 

  • Combes R, Balls M, Illing P, Bhogal N, Dale J, Duve G, Feron V, Grindon C, Gulden M, Loizou G, Priston R, Westmoreland C (2006) Possibilities for a new approach to chemicals risk assessment–the report of a FRAME workshop. ATLA-Altern Lab Anim 34:621–649

    CAS  Google Scholar 

  • Coulombe RA Jr, Sharma RP (1985) Clearance and excretion of intratracheally and orally administered aflatoxin B1 in the rat. Food Chem Toxicol 23:827–830

    Article  PubMed  CAS  Google Scholar 

  • Davies NM (1998) Clinical pharmacokinetics of ibuprofen: the first 30 years. Clin Pharmacokinet 34:101–154

    Article  PubMed  CAS  Google Scholar 

  • Davies DS, Wing AM, Reid JL, Neill DM, Tippett P, Dollery CT (1977) Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther 21:593–601

    PubMed  CAS  Google Scholar 

  • DeJongh J, Verhaar HJM, Hermens JLM (1997) A quantitative property-property relationship (QPPR) approach to estimate in vitro tissue-blood partition coefficients of organic chemicals in rats and humans. Arch Toxicol 72:17–25

    Google Scholar 

  • Divoll M, Greenblatt DJ, Ameer B, Abernethy DR (1982) Effect of food on acetaminophen absorption in young and elderly subjects. J Clin Pharmacol 22:571–576

    PubMed  CAS  Google Scholar 

  • Drugbank (2010) http://www.drugbank.ca. Accessed 15 June 2010

  • Ellinger-Ziegelbauer H, Gmuenderb H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637:23–39

    PubMed  CAS  Google Scholar 

  • Evans MV, Andersen ME (2000) Sensitivity analysis of a physiological model for 2, 3, 7, 8-tatrachlorodibenzo-p-dioxin (TCDD): assessing the impact of specific model parameters on sequestration in liver and fat in the rat. Toxicol Sci 54:71–80

    Article  PubMed  CAS  Google Scholar 

  • Gombar CT, Harrington GW, Pylypiw HM Jr, Anderson LM, Palmer AE, Rice JM, Magee PN, Burak ES (1990) Interspecies scaling of the pharmacokinetics of W-nitrosodimethylamine. Cancer Res 50:4366–4370

    PubMed  CAS  Google Scholar 

  • Grundy JS, Eliot LA, Foster RT (1997) Biopharm Extrahepatic first-pass metabolism of nifedipine in the rat. Biopharm Drug Dispos 18:509–522

    Article  PubMed  CAS  Google Scholar 

  • Hobbs DC, Twomey TM, Palmer RF (1978) Pharmacokinetics of prazosin in man. J Clin Pharmacol 18(8–9):402–406

    PubMed  CAS  Google Scholar 

  • Institut national de recherche et de sécurité (2004) Alcool allylique. Fiche toxicologique no. 156. INRS, Paris

    Google Scholar 

  • Keldenich J (2009) Measurement and prediction of oral absorption. Chem Biodivers 6:2000–2013

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GL (1982) Biological effects of acetamid, formaid, and their monomethyl and dimethyl derivatives. Crit Rev Toxicol 17:129–182

    Article  Google Scholar 

  • Levin VA, Liu J, Weinkam RJ (1981) Comparative pharmacokinetics of 1-(2-Chloroethyl)-3-(2, 6-dioxo-1-piperidyl)-1-nitrosourea in rats and patients and extrapolation to clinical trials. Cancer Res 41:3475–3477

    PubMed  CAS  Google Scholar 

  • Loizou GD, Spendiff M, Barton HA, Bessems J, Bois FY, Bouvier d’Yvoire M, Buist H, Clewell H III, Gundert-Remy U, Goerlitz G, Meek B, Schmitt W (2008) Development of good modelling practice for physiologically based pharmacokinetic models for use in risk assessment: the first steps. Regul Toxicol Pharmacol 50:400–411

    Article  PubMed  CAS  Google Scholar 

  • Mielke H, Gundert-Remy U (2009) Bisphenol a levels in blood depend on age and exposure. Toxicol Lett 190:32–40

    Article  PubMed  CAS  Google Scholar 

  • Mora PC, Cirri M, Guenther S, Allolio B, Carli F, Mura P (2003) Enhancement of dehydroepiandrosterone solubility and bioavailability by ternary complexation with alpha-cyclodextrin and glycine. J Pharm Sci 92(11):2177–2184

    Article  PubMed  CAS  Google Scholar 

  • Neumann H (1976) Dose-dependent kinetics of diethylstilbestrol in the rat. J Toxicol Environ Health Suppl 1:61–76

    PubMed  CAS  Google Scholar 

  • Okable H, Higashi T, Ohta T, Hashimoto Y (2004) Intestinal absorption and hepatic extraction of propranolol and metoprolol in rats with bilateral ureteral ligation. Biol Pharm Bull 27(9):1422–1427

    Article  Google Scholar 

  • Pepping J (2000) DHEA: dehydroepiandrosterone. Am J Health Syst Pharm 57(22):2048–2056

    PubMed  CAS  Google Scholar 

  • PhysProp Database (2010) http://www.syrres.com. Accessed 15 June 2010

  • Ramsey JC, Andersen ME (1984) A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol Appl Pharmacol 73:159–175

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Carretero P, Nacher A, Merino-Sanjuan M, Casabo VG (2000) Pharmacokinetics and absolute bioavailability of oral cefuroxime axetil in the rat. Int J Pharm 202(1–2):89–96

    Article  PubMed  CAS  Google Scholar 

  • Schmitt W (2008) General approach for the calculation of tissue to plasma partition coefficient. Toxicol In Vitro 22:457–467

    Article  PubMed  CAS  Google Scholar 

  • Schug M, Heise T, Bauer A, Storm D, Blaszkewicz M, Bedawy E, Brulport M, Geppert B, Hermes M, Föllmann W, Rapp K, Maccoux L, Schormann W, Appel KE, Oberemm A, Gundert-Remy U, Hengstler JG (2008) Primary rat hepatocytes as in vitro system for gene expression studies: comparison of sandwich, Matrigel and 2D cultures. Arch Toxicol 82:923–931

    Article  PubMed  CAS  Google Scholar 

  • Shalaeva M, Kenseth J, Lombardo F, Bastin A (2008) Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci 97:2581–2606

    Article  PubMed  CAS  Google Scholar 

  • Speck U, Wendt H, Schulze PE, Jentsch D (1976) Bioavailability and pharmacokinetics of cypreterone acetate-C14 and ethinyloestradiol-3H after oral administration as coated tablet (SH B 209 AB). Contraception 14:151–163

    Article  PubMed  CAS  Google Scholar 

  • Stewart BW, Magee PN (1972) Metabolism and some biochemical effects of N-nitrosomorpholine. Biochem J 126(3):21P–22P

    PubMed  CAS  Google Scholar 

  • Verwei M, Freidig AP, Harenaar R, Groten JP (2006) Prediciton of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165:79–87

    Article  PubMed  CAS  Google Scholar 

  • Wan H, Holmén AG, Wang Y, Lindberg W, Englund M, Någård MB, Thompson RA (2003) High-throughput screening of pKa values of pharmaceuticals by pressure-assisted capillary electrophoresis and mass spectrometry. Rapid Commun Mass Spectrom 23:2639–2648

    Article  Google Scholar 

  • Zhang X, Tsang AM, Okino MS, Power FW, Knaak JB, Harrison LS, Dary CC (2007) A physiologically based pharmacokinetic/pharmacodynamic model for carbofuran in sprague-dawley rats using the exposure-related dose estimating model. Toxicol Sci 100(2):345–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Walter Schmitt who provided help for the calculation of partition coefficients.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Mielke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, H., Anger, L.T., Schug, M. et al. A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol 85, 555–563 (2011). https://doi.org/10.1007/s00204-010-0612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0612-y

Keywords

Navigation