Skip to main content
Log in

Loss of imprinting of the insulin-like growth factor 2 and the H19 gene in testicular seminomas detected by real-time PCR approach

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

IGF2 and H19 are imprinted genes in normal human tissue, but many studies have observed a loss of imprinting (LOI) of these genes in tumors as an epigenetic alteration of the DNA, that leads to a biallelic expression predisposing cells to carcinogenesis and tumor growth. The aim of this study was to test the reliability of LightCycler™-assisted Real-time PCR in detecting LOI of IGF2 and H19 in 39 patients with testicular germ cell tumors by comparing these results with the analysis generated by the golden standard restriction fragment length polymorphism (RFLP). With LightCycler™-assisted Real-time PCR for IGF2 44% and for H19 49% of the patients were found to be heterozygous. This was consistent with the results obtained by RFLP, but surprisingly RFLP failed in more than 7% of the patients. In detecting LOI (for IGF2 in 41% and for H19 in 68% of the informative patients) the approach by RFLP was superior, since the results derived from LightCycler™-assisted Real-time PCR showed reliable results in 76 and 10% of the samples concerning IGF2 and H19, respectively. Again, no discrepancy between the results obtained by the two methods occurred. In sum, LightCycler™-assisted Real-time PCR is a sufficiently working approach for the rapid and reliable detection of heterozygosity of IGF2 or H19 gene and identification of LOI of IGF2 and thus may be helpful in conducting large epidemiological studies. However, for the identification of LOI of the H19 gene in this cohort it possesses only restrictive use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brüning T, Abel J, Koch B, Lorenzen K, Harth V, Donat S, Sachinidis A, Vetter H, Bolt HM, Ko Y (1999) Real-time PCR-analysis of the cytochrome P450 1B1 codon 432-polymorphism. Arch Toxicol 73:427–430

    Article  PubMed  Google Scholar 

  • Burns JL, Jackson DA, Hassan AB (2001) A view through the clouds of imprinting. FASEB J 15:1694–1703

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, Ip SM, Cheng D, Wong LC, Ngan HY (2000) Loss of imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Clin Cancer Res 6:474–479

    PubMed  CAS  Google Scholar 

  • Christofori G, Naik P, Hanahan D (1994) A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369:414–418

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Horon IL, Ohlsson R, Hamilton SR, Feinberg AP (1998) Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med 4:1276–1280

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  PubMed  CAS  Google Scholar 

  • Douc-Rasy S, Barrois M, Fogel S, Ahomadegbe JC, Stehelin D, Coll J, Riou G (1996) High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene 12:423–430

    PubMed  CAS  Google Scholar 

  • Fukuzawa R, Umezawa A, Ochi K, Urano F, Ikeda H, Hata J (1999) High frequency of inactivation of the imprinted H19 gene in “sporadic” hepatoblastoma. Int J Cancer 82:490–497

    Article  PubMed  CAS  Google Scholar 

  • Goodman JI, Watson RE (2002) Altered DNA methylation: a secondary mechanism involved in carcinogenesis. Annu Rev Pharmacol Toxicol 42:501–525

    Article  PubMed  CAS  Google Scholar 

  • van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga LH (1994) Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst 86:1070–1075

    Article  PubMed  Google Scholar 

  • Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767

    Article  PubMed  CAS  Google Scholar 

  • Harth V, Donat S, Ko Y, Abel J, Vetter H, Brüning T (2000) NAD(P)H quinone oxidoreductase 1 codon 609 polymorphism and its association to colorectal cancer. Arch Toxicol 73:528–531

    Article  PubMed  CAS  Google Scholar 

  • Jirtle RL (1999) Genomic imprinting and cancer. Exp Cell Res 248:18–24

    Article  PubMed  CAS  Google Scholar 

  • Ko Y, Koch B, Harth V, Sachinidis A, Thier R, Vetter H, Bolt HM, Brüning T (2000) Rapid analysis of GSTM1, GSTT1 and GSTP1 polymorphisms using real-time polymerase chain reaction. Pharmacogenetics 10:271–274

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T (1995) Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10:1193–1198

    PubMed  CAS  Google Scholar 

  • Li X, Adam G, Cui H, Sandstedt B, Ohlsson R, Ekstrom TJ (1995) Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. Oncogene 11:221–229

    PubMed  CAS  Google Scholar 

  • Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T et al (1994) Epigenetic lesions at the H19 locus in Wilms’ tumour patients. Nat Genet 7:440–447

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Chadwick RB, Peltomaki P, Plass C, Nakamura Y, de La Chapelle A (2001) Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA 98:591–596

    Article  PubMed  CAS  Google Scholar 

  • Narayan S, Roy D (2003) Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer 2:41

    Article  PubMed  Google Scholar 

  • Neuhaus T, Geisen G, Bolt HM, Janzen V, Kraemer A, Vetter H, Ko Y (2004) Reliability of non-invasively acquired human genomic DNA as a substrate for real-time PCR assisted analysis of genetic polymorphisms. Arch Toxicol 78(7):390–396

    Article  PubMed  CAS  Google Scholar 

  • Nonomura N, Miki T, Nishimura K, Kanno N, Kojima Y, Okuyama A (1997a) Altered imprinting of the H19 and insulin-like growth factor II genes in testicular tumors. J Urol 157:1977–1979

    Article  CAS  Google Scholar 

  • Nonomura N, Nishimura K, Miki T, Kanno N, Kojima Y, Yokoyama M, Okuyama A (1997b) Loss of imprinting of the insulin-like growth factor II gene in renal cell carcinoma. Cancer Res 57:2575–2577

    CAS  Google Scholar 

  • O’Dell SD, Day IN (1998) Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol 30:767–771

    Article  PubMed  CAS  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Nystrom A, Pfeifer-Ohlsson S, Tohonen V, Hedborg F, Schofield P, Flam F, Ekstrom TJ (1993) IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome. Nat Genet 4:94–97

    Article  PubMed  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Murrell A (2000) Genomic imprinting. Silence across the border. Nature 405:408–409

    Article  PubMed  CAS  Google Scholar 

  • Sandovici I, Leppert M, Hawk PR, Suarez A, Linares Y, Sapienza C (2003) Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Hum Mol Genet 12:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Schofield PN (1991) Molecular biology of the insulin-like growth factors: gene structure and expression. Acta Paediatr Scand Suppl 372:83–90; discussion 91

    Google Scholar 

  • Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet 7:433–439

    Article  PubMed  CAS  Google Scholar 

  • Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12:3693–3702

    Article  PubMed  CAS  Google Scholar 

  • Vu TH, Yballe C, Boonyanit S, Hoffman AR (1995) Insulin-like growth factor II in uterine smooth-muscle tumors: maintenance of genomic imprinting in leiomyomata and loss of imprinting in leiomyosarcomata. J Clin Endocrinol Metab 80:1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Werner H, LeRoith D (1996) The role of the insulin-like growth factor system in human cancer. Adv Cancer Res 68:183–223

    Article  PubMed  CAS  Google Scholar 

  • Zhan S, Shapiro DN, Helman LJ (1994) Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest 94:445–448

    Article  PubMed  CAS  Google Scholar 

  • Zhan S, Shapiro DN, Helman LJ (1995) Loss of imprinting of IGF2 in Ewing’s sarcoma. Oncogene 11:2503–2507

    PubMed  CAS  Google Scholar 

  • Zhang Y, Tycko B (1992) Monoallelic expression of the human H19 gene. Nat Genet 1:40–44

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yon Ko.

Additional information

Sebastian Stier and Thomas Neuhaus contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stier, S., Neuhaus, T., Albers, P. et al. Loss of imprinting of the insulin-like growth factor 2 and the H19 gene in testicular seminomas detected by real-time PCR approach. Arch Toxicol 80, 713–718 (2006). https://doi.org/10.1007/s00204-006-0087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0087-z

Keywords

Navigation