Skip to main content

Advertisement

Log in

Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Soil microbes play important roles in plant growth and in the biogeochemical cycling of earth’s elements. However, the structure and functions of the microbial community associated with the growth of second-generation energy crops, such as Miscanthus, remain unclear. Thus, in this study, the composition and function of the bacterial and fungal communities associated with Miscanthus cultivation were analyzed by MiSeq sequencing combined with PICRUSt and FUNGUIld analyses. The results of community composition and diversity index analyses showed that Miscanthus cultivation significantly altered the bacterial and fungal community composition and reduced bacterial and fungal diversity. In addition, Miscanthus cultivation increased the soil organic matter (SOM) and total nitrogen (TN) contents. The correlation analysis between microbial community composition and environmental factors indicated that SOM and TN were the most important factors affecting bacterial and fungal communities. Miscanthus cultivation could enrich the abundances of Pseudomonas, Rhizobium, Luteibacter, Bradyrhizobium, Phenylobacterium and other common plant-promoting bacteria, while also increasing Cladophialophora, Hymenula, Magnaporthe, Mariannaea, etc., which predicted corresponded to the saprotrophic, plant pathogenic, and pathotrophic trophic modes. The PICRUSt predictive analysis indicated that Miscanthus cultivation altered the metabolic capabilities of bacterial communities, including the metabolism of carbon, nitrogen, and phosphorus cycle. In addition, FUNGUIld analysis indicated that Miscanthus cultivation altered the fungal trophic mode. The effects of Miscanthus on the communities and function of bacteria and fungi varied among Miscanthus species. Miscanthus specie Xiangdi NO 1 had the greatest impact on soil bacterial and fungal communities, whereas Miscanthus specie Wujiemang NO 1 had the greatest impact on soil bacteria and fungi functions. The results of this study provide a reference for the composition and function of microbial communities during the growth of Miscanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285

    PubMed  Google Scholar 

  • Abdelkrim S, Jebara SH, Saadani O, Jebara M (2018) Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress. Plant Biol 20:857–869

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  PubMed Central  Google Scholar 

  • Bourgeois E, Dequiedt S, Lelièvre M, Van Oort F, Lamy I, Ranjard L, Maron P (2015) Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ Chem Lett 13:503–511

    CAS  Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuel Bioprod Biorefin 6:580–598

    CAS  Google Scholar 

  • Cadoux S, Riche AB, Yates NE, Machet J-M (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22

    CAS  Google Scholar 

  • Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case SDC, Mcnamara NP, Reay DS, Whitaker J (2014) Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy 6:76–89

    CAS  Google Scholar 

  • Chauhan H, Bagyaraj DJ, Selvakumar G, Sundaram SP (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl Soil Ecol 95:38–53

    Google Scholar 

  • Chen H, Dai Z, Jager HI, Wullschleger SD, Xu J, Schadt CW (2019) Influences of nitrogen fertilization and climate regime on the above-ground biomass yields of miscanthus and switchgrass: a meta-analysis. Renew Sustain Energy Rev 108:303–311

    CAS  Google Scholar 

  • Davis SC, Parton WJ, Dohleman FG, Smith CM, Grosso SD, Kent AD, Delucia EH (2010) Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a Miscanthus × giganteus agro-ecosystem. Ecosystems 13:144–156

    CAS  Google Scholar 

  • Deng W, Wang Y, Liu Z, Cheng H, Xue Y (2014) HemI: a toolkit for illustrating heatmaps. PLoS ONE 9:e111988

    PubMed  PubMed Central  Google Scholar 

  • Dufossé K, Drewer J, Gabrielle B, Drouet JL (2014) Effects of a 20-year old Miscanthus × giganteus stand and its removal on soil characteristics and greenhouse gas emissions. Biomass Bioenergy 69:198–210

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    CAS  PubMed  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    CAS  Google Scholar 

  • Hartman WH, Ye R, Horwath WR, Tringe SG (2017) A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J 11:2652–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014

    Google Scholar 

  • Hoogwijk M, Faaij A, Van Den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133

    Google Scholar 

  • Hu Y, Zhang Z, Huang L, Qi Q, Liu L, Zhao Y, Wang Z, Zhou H, Lv X, Mao Z, Yang Y, Zhou J, Kardol P (2019) Shifts in soil microbial community functional gene structure across a 61-year desert revegetation chronosequence. Geoderma 347:126–134

    CAS  Google Scholar 

  • Jiang L, Song M, Yang L, Zhang D, Sun Y, Shen Z, Luo C, Zhang G (2016) Exploring the influence of environmental factors on bacterial communities within the rhizosphere of the Cu-tolerant plant, Elsholtzia splendens. Sci Rep 6:36302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrun E, Kang S (2018) A comparison of computationally predicted functional metagenomes and microarray analysis for microbial P cycle genes in a unique basalt-soil forest. F1000 Research 7:179

    PubMed  PubMed Central  Google Scholar 

  • Li S-Z, Chan-Halbrendt C (2009) Ethanol production in (the) People’s Republic of China: potential and technologies. Appl Energy 86:S162–S169

    CAS  Google Scholar 

  • Li D-F, Voigt TB, Kent AD (2016) Plant and soil effects on bacterial communities associated with Miscanthus × giganteus rhizosphere and rhizomes. GCB Bioenergy 8:183–193

    Google Scholar 

  • Luo J, Tao Q, Wu K, Li J, Qian J, Liang Y, Yang X, Li T (2017) Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Appl Microbiol Biotechnol 101:7961–7976

    CAS  PubMed  Google Scholar 

  • Mao Y, Yannarell AC, Davis SC, Mackie RI (2013) Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol 15:928–942

    CAS  PubMed  Google Scholar 

  • Martínez-Diz MDP, Andrés-Sodupe M, Bujanda R, Díaz-Losada E, Eichmeier A, Gramaje D (2019) Soil-plant compartments affect fungal microbiome diversity and composition in grapevine. Fungal Ecol 41:234–244

    Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    CAS  PubMed  Google Scholar 

  • Masters MD, Black CK, Kantola IB, Woli KP, Voigt T, David MB, Delucia EH (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus × giganteus, and prairie. Agric Ecosyst Environ 216:51–60

    CAS  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nebeská D, Trögl J, Pidlisnyuk V, Popelka J, Veronesi Dáňová P, Usťak S, Honzík R (2018) Effect of growing Miscanthus × giganteus on soil microbial communities in post-military soil. Sustainability 10:4021

    Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    PubMed  Google Scholar 

  • Pham HN, Pham PA, Nguyen TTH, Meiffren G, Brothier E, Lamy I, Michalet S, Dijoux-Franca M-G, Nazaret S (2018) Influence of metal contamination in soil on metabolic profiles of Miscanthus × giganteus belowground parts and associated bacterial communities. Appl Soil Ecol 125:240–249

    Google Scholar 

  • Phillips LA, Ward V, Jones MD (2014) Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J 8:699–713

    CAS  PubMed  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415

    CAS  Google Scholar 

  • Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48

    CAS  PubMed  Google Scholar 

  • Ren X-M, Guo S-J, Tian W, Chen Y, Han H, Chen E, Li B-L, Li Y-Y, Chen Z-J (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro H, De Sousa T, Santos JP, Sousa AGG, Teixeira C, Monteiro MR, Salgado P, Mucha AP, Almeida CMR, Torgo L, Magalhães C (2018) Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation. Chemosphere 199:54–67

    CAS  PubMed  Google Scholar 

  • Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18

    Google Scholar 

  • Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, Da Rocha UN, He Z, Pett-Ridge J, Brodie EL, Zhou J, Firestone M (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6:e00746-00715

    Google Scholar 

  • Thompson KA, Deen B, Dunfield KE (2018) Impacts of surface-applied residues on N-cycling soil microbial communities in miscanthus and switchgrass cropping systems. Appl Soil Ecol 130:79–83

    Google Scholar 

  • Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Chen W, Luo F, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han B, Ge S, Li J, Sang T (2012) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4:49–60

    Google Scholar 

  • Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS ONE 12:e0178425

    PubMed  PubMed Central  Google Scholar 

  • Yuan Z-L, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zatta A, Clifton-Brown J, Robson P, Hastings A, Monti A (2014) Land use change from C3 grassland to C4 Miscanthus: effects on soil carbon content and estimated mitigation benefit after six years. GCB Bioenergy 6:360–370

    CAS  Google Scholar 

  • Zhang B, Penton CR, Xue C, Quensen JF, Roley SS, Guo J, Garoutte A, Zheng T, Tiedje JM (2017) Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biol Biochem 112:140–152

    CAS  Google Scholar 

  • Zhang W-H, Sun R-B, Xu L, Liang J-N, Zhou J (2019) Assessment of bacterial communities in Cu-contaminated soil immobilized by a one-time application of micro-/nano-hydroxyapatite and phytoremediation for 3 years. Chemosphere 223:240–249

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41601332), the Key Research Project of Colleges and Universities of Henan Province Education Department (Grant No. 16A210012, 17A180032) and the Central Public-interest Scientific Institution Basal Research Fund: Study on the mechanism of cadmium accumulation in soil by rice controlled by heavy metal immobilized microorganism and organic materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Jin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tian, W., Shao, Y. et al. Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses. Arch Microbiol 202, 1157–1171 (2020). https://doi.org/10.1007/s00203-020-01830-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01830-1

Keywords

Navigation