Skip to main content

Advertisement

Log in

The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To explore how a succession of bacteria grown on steel coupons in a marine environment can influence their corrosion process, we designed a microcosm in laboratory to evaluate corrosion kinetics and microbial diversity over 30 days. The results described a clear influence of corrosion by a succession of different bacterial groups. During the initial period, 2–7 days, a sharp increase in the rate of corrosion was detected accompanied by the presence of Alteromonadaceae, Vibrionaceae, Oceanospirillaceae, Rhodobacteraceae, Rhodospirillaceae and Flavobacteriaceae bacteria families. After 15 days, representatives of families Piscirickettsiaceae and Pseudomonadaceae were also described, accompanied by a continuous corrosion process over the coupons. After 30 days, there was a sudden change in the profile of the bacteria present on the steel coupons, with a prevalence of Halomonadaceae family species, and establishment and continuity of the corrosion process by the biofilm grown on the coupons. The results describe differences in microbial diversity over the time, highlighting certain bacterial lithotrophic species that persisted for most of the experiment, through a complex association between bacteria and metal surfaces, which can be a new starting point for development and maintenance of a favorable microenvironment to accelerate corrosion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angell P, Machowski WJ, Paul PP et al (1997) A multiple chemostat system for consortia studies on microbially influenced corrosion. J Microbiol Methods 30:173–178

    Article  Google Scholar 

  • Carpén L, Rajala P, Vepsäläinen M et al. (2013) Corrosion behaviour and biofilm formation on carbon steel and stainless steel in simulated repository environment. Paper Presented at the Eurocorr, Estoril, pp 1589

  • Carvalho ML, Doma J, Sztyler M et al (2014) The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: the role of microbiological components. Bioelectrochemistry 97:2–6

    Article  CAS  Google Scholar 

  • Dang H, Lovell CR (2015) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138

    Article  Google Scholar 

  • Dang H, Chen R, Wang L et al (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13(11):3059–3074

    Article  CAS  Google Scholar 

  • Doghri I, Rodrigues S, Bazire A et al (2015) Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures. BMC Microbiol 15:231

    Article  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76

    Article  CAS  Google Scholar 

  • Hays GF (2001) Now is the time. World Corrosion Organization, New York

    Google Scholar 

  • Hubert C, Nemati M, Jenneman G et al (2003) Containment of biogenic sulfide production in continuous up-flow packed be bioreactors. Biotechnol Prog 19:338–345

    Article  CAS  Google Scholar 

  • Jin J, Wu G, Guan Y (2015) Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res 71:207–218

    Article  CAS  Google Scholar 

  • Koch GH, Brongers MPH, Thompon NG et al (2002) Corrosion cost and preventive strategies in the United States. NACE International, Houston

    Google Scholar 

  • Lane RA (2005) Under the microscope: understanding, detecting, and preventing microbiologically influenced corrosion. AMPTIAC Q 9(1):3–8

    Google Scholar 

  • Lee AK, Newman DK (2003) Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol 62(2–3):134–139

    Article  CAS  Google Scholar 

  • Liengen T, Basseguy R, Feron D et al. (2014) Understanding biocorrosion: fundamentals and applications, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  • Marty F, Gueuné H, Malard E et al (2014) Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota. Biofouling 30(3):281–297

    Article  CAS  Google Scholar 

  • McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767

    Article  Google Scholar 

  • McBeth JM, Little BJ, Ray RI et al (2011) Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77(4):1405–1412

    Article  CAS  Google Scholar 

  • Melchers RE (1999) Corrosion uncertainty modelling for steel structures. J Constr Steel Res 52:3–19

    Article  Google Scholar 

  • Mumford AC, Adaktylou IJ, Emerson D (2016) Peeking under the iron curtain: development of a microcosm for imaging the colonization of steel surfaces by Mariprofundus sp. strain DIS-1, an oxygen-tolerant Fe-oxidizing bacterium. Appl Environ Microbiol 82(22):6799–6807

    Article  CAS  Google Scholar 

  • NACE RP-07-75 (2005) Standard recommended practice, preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. NACE International, Houston

    Google Scholar 

  • Quaiser A, Bodi X, Dufresne A et al (2014) Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. PLoS One 9(7):e102561

    Article  Google Scholar 

  • Rabald V (1968) Corrosion guide. Elsevier, New York

    Google Scholar 

  • Rajala P, Carpén L, Vepsäläinen M et al (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 24(6):647

    Google Scholar 

  • Ramírez GA, Hoffman CL, Lee MD et al (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679

    Article  Google Scholar 

  • Sorokin DY, Tourova TP, Muyzer G (2005) Citreicella thiooxidans gen. nov., sp. Nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28(8):679–687

    Article  CAS  Google Scholar 

  • Thompon NG, Yunocivh M, Dunmiret D (2007) Cost of corrosion and corrosion maintenance strategies. Corros Rev 25:247

    Google Scholar 

  • Vandecandelaere I, Segaert E, Mollica A et al (2009) Phaeobacter caeruleus sp. nov., a blue-coloured, colony-forming bacterium isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 59(Pt5):1209–1214

    Article  CAS  Google Scholar 

  • Videla HA (1996) Manual of biocorrosion. Lewis Publishers, Boca Raton

    Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169–180

    CAS  PubMed  Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58

    Article  CAS  Google Scholar 

  • Xu D, Xia J, Zhou E et al (2017) Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry 113:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Procópio.

Additional information

Communicated by Shuang-Jiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, V., Ribeiro, I., Moriggi, P. et al. The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 200, 1447–1456 (2018). https://doi.org/10.1007/s00203-018-1559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1559-2

Keywords

Navigation