Skip to main content
Log in

Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The diversity of 43 bacterial strains isolated from Beninese entomopathogenic nematodes was investigated molecularly by analyzing the 16S rRNA, recA, and gyrB genes. Based on 16S rRNA sequence analysis, 15 bacterial strains were identified as Xenorhabdus sp., 27 strains as Photorhabdus sp., and one as Serratia sp. The Xenorhabdus strains were isolated from Steinernema nematodes and identified as Xenorhabdus indica based on 16S rRNA gene and concatenated recA and gyrB sequence analysis. However, analysis of 16S rRNA and concatenated recA and gyrB gene sequences of the Photorhabdus strains, all isolated from Heterorhabditis nematodes, resulted in two separate sub-clusters (A) and (B) within the Photorhabdus luminescens group, distinct from the existing subspecies. They share low sequence similarities with nearest phylogenetic neighbors Photorhabdus luminescens subsp. luminescens HbT, Photorhabdus luminescens subsp. caribbeanensis HG29T, and Photorhabdus luminescens subsp. noenieputensis AM7T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguillera MM, Hodge NC, Stall RE, Smart GC (1993) Bacterial symbionts of Steinernema scapterisci. J Invertebr Pathol 62:68–72

    Article  Google Scholar 

  • Akhurst R (1980) Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309

    Google Scholar 

  • Akhurst R (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065

    CAS  PubMed  Google Scholar 

  • Akhurst R, Boemare N, Janssen P, Peel M, Alfredson D, Beard C (2004) Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 54:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Babic I, Fischer-Le Saux M, Giraud E, Boemare N (2000) Occurrence of natural dixenic associations between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhabditis spp.(Nematoda, Rhabditida). Microbiology 146:709–718

    Article  CAS  PubMed  Google Scholar 

  • Baimey H, Zadji L, Afouda L, Moens M, Decraemer W (2015) Influence of pesticides, soil temperature and moisture on entomopathogenic nematodes from southern Benin and control of underground termite nest populations. Nematology 17:1057–1069

    CAS  Google Scholar 

  • Bedding R, Akhurst R (1975) A simple technique for the detection of insect paristic rhabditid nematodes in soil. Nematologica 21:109–110

    Article  Google Scholar 

  • Bird A, Akhurst R (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606

    Article  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, pp 35-56

  • Boemare N, Akhurst R (1988) Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). J Gen Microbiol 134:751–761

    CAS  Google Scholar 

  • Boemare N, Akhurst R, Mourant R (1993) DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 43:249–255

    Article  CAS  Google Scholar 

  • Bonifassi E, Fischer-Le Saux M, Boemare N, Lanois A, Laumond C, Smart G (1999) Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol 74:164–172

    Article  CAS  PubMed  Google Scholar 

  • Cimen H, Půža V, Nermuť J, Hatting J, Ramakuwela T, Faktorova L, Hazir S (2016) Steinernema beitlechemi n. sp., a new entomopathogenic nematode (Nematoda: Steinernematidae) from South Africa. Nematology 18:439–453

    Article  CAS  Google Scholar 

  • Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558

    CAS  PubMed  Google Scholar 

  • Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, De Vuyst L (2007) Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JR, Kersters K, Vandamme P (1999) Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Evol Microbiol 49:405–413

    Google Scholar 

  • Dreyer J, Malan AP, Dicks LMT (2017) Three novel Xenorhabdus–Steinernema associations and evidence of strains of X. khoisanae switching between different clades. Curr Microbiol 74:938–942

    Article  CAS  PubMed  Google Scholar 

  • Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    Article  CAS  PubMed  Google Scholar 

  • Elawad S, Robson R, Hague N (1999) Observations on the bacterial symbiont associated with the nematode, Steinernema abbasi (Steinernematidae: Nematoda). In: COST, pp 105–111

  • Emelianoff V, Sicard M, Le Brun N, Moulia C, Ferdy J-B (2007) Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Parasitol Res 100:657–659

    Article  PubMed  Google Scholar 

  • Ferreira T, Van Reenen C, Tailliez P, Pagès S, Malan A, Dicks L (2016) First report of the symbiotic bacterium Xenorhabdus indica associated with the entomopathogenic nematode Steinernema yirgalemense. J Helminthol 90:108–112

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE (1999) Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov. P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Evol Microbiol 49:1645–1656

    Google Scholar 

  • Forst S, Nealson K (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60:21–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A (2017) Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasites Vectors 10:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. J Therm Biol 19:245–253

    Article  Google Scholar 

  • Hunt DJ, Subbotin SA (2016) Taxonomy and systematics. In: Hunt DJ, Nguyen KB (eds) Advances in Taxonomy and Phylogeny of Entomopathogenic Nematodes of the Steinernematidae and Heterorhabditidae, vol 12. Koninklijke Brill NV, Leiden, pp 13–58

    Google Scholar 

  • Kazimierczak W, Skrzypek H, Sajnaga E, Skowronek M, Waśko A, Kreft A (2017) Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Arch Microbiol 199:979–989

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lee M-M, Stock SP (2010) A multigene approach for assessing evolutionary relationships of Xenorhabdus spp.(γ-Proteobacteria), the bacterial symbionts of entomopathogenic Steinernema nematodes. J Invertebr Pathol 104:67–74

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Berry RE, Blouin MS (2001) Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. J Invertebr Pathol 77:87–91

    Article  CAS  PubMed  Google Scholar 

  • Lysenko O, Weiser J (1974) Bacteria associated with the nematode Neoaplectana carpocapsae and the pathogenicity of this complex for Galleria mellonella larvae. J Invertebr Pathol 24:332–336

    Article  CAS  PubMed  Google Scholar 

  • Martens EC, Goodrich-Blair H (2005) The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell Microbiol 7:1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, Chantratita N, Vitta A, Tobias NJ, Bode HB (2017) Screening of the antimicrobial activity against drug resistant bacteria of Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes from Mae Wong National Park, Thailand. Front Microbiol 8:1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen K, Hunt D (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts vol 5. Nematology monographs and perspectives. Brill, Leiden-Boston

    Book  Google Scholar 

  • Orozco RA, Hill T, Stock SP (2013) Characterization and Phylogenetic Relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the Bacterial Symbiont of the Entomopathogenic Nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 66:30–39

    Article  CAS  PubMed  Google Scholar 

  • Peat SM, Waterfield NR, Marokházi J, Fodor A, Adams BJ (2010) A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: a case for 16S, gyrB, and glnA. Mol Phylogenet Evol 57:728–740

    Article  CAS  PubMed  Google Scholar 

  • Pitcher D, Saunders N, Owen R (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    Article  CAS  Google Scholar 

  • Rainey F, Ehlers R-U, Stackebrandt E (1995) Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int J Syst Evol Microbiol 45:379–381

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Morgan JAW (2006) Identification, typing, and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smigielski AJ, Akhurst RJ, Boemare NE (1994) Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: differences in respiratory activity and membrane energization. Appl Environ Microbiol 60:120–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somvanshi VS, Lang E, Ganguly S, Swiderski J, Saxena AK, Stackebrandt E (2006) A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh 2000. Syst Appl Microbiol 29:519–525

    Article  CAS  PubMed  Google Scholar 

  • Spiridonov SE, Subbotin SA (2016) Phylogeny and phylogeography of Heterorhabditis and Steinernema. Adv Entomopathog Nematode Taxon Phylogeny 12:413–427

    Google Scholar 

  • Stock SP (2015) Diversity, biology and evolutionary relationships. In: R C-H (ed) Nematode pathogenesis of insects and other pests. Springer, Berlin, pp 3–27

    Chapter  Google Scholar 

  • Strauch O, Ehlers R-U (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50:369–374

    Article  CAS  Google Scholar 

  • Szállás E, Koch C, Fodor A, Burghardt J, Buss O, Szentirmai A, Nealson KH, Stackebrandt E (1997) Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Int J Syst Evol Microbiol 47:402–407

    Google Scholar 

  • Tailliez P, Pages S, Ginibre N, Boemare N (2006) New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol Microbiol 56:2805–2818

    Article  CAS  PubMed  Google Scholar 

  • Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov. P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 60:1921–1937

    Article  PubMed  Google Scholar 

  • Tailliez P, Pagès S, Edgington S, Tymo LM, Buddie AG (2012) Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int J Syst Evol Microbiol 62:1761–1765

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Long PK, Bode HB, Peacock SJ, Chantratita N (2012) Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 7:e43835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas GM, Poinar GO (1979) Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 29:352–360

    Article  Google Scholar 

  • Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control 59:123–129

    Article  Google Scholar 

  • Tóth T, Lakatos T (2008) Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 58:2579–2581

    Article  PubMed  Google Scholar 

  • Vrain T, Wakarchuk D, Levesque A, Hamilton R (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund Appl Nematol 15:563–573

    Google Scholar 

  • White G (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303

    Article  CAS  PubMed  Google Scholar 

  • Zadji L, Baimey H, Afouda L, Houssou FG, Waeyenberge L, de Sutter N, Moens M, Decraemer W (2013) First record on the distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Southern Benin. Russ J Nematol 21:117–130

    Google Scholar 

  • Zadji L, Baimey H, Afouda L, Moens M, Decraemer W (2014) Comparative susceptibility of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin. Nematology 16:719–727

    Article  Google Scholar 

  • Zhang C, Liu J, Xu M, Sun J, Yang S, An X, Gao G, Lin M, Lai R, He Z (2008) Heterorhabditidoides chongmingensis gen. nov., sp. nov.(Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 98:153–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Special Research Fund (BOF) of Ghent University (Belgium), grant 01W00713. The authors would like to thank Pia Clercx and Andy Vierstraete for the excellent technical assistance and Nancy de Sutter for maintaining the nematode cultures at Flanders Research Institute for Agriculture, Fisheries and Food (ILVO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Willems.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 656 KB)

Supplementary material 2 (PDF 408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godjo, A., Afouda, L., Baimey, H. et al. Molecular diversity of Photorhabdus and Xenorhabdus bacteria, symbionts of Heterorhabditis and Steinernema nematodes retrieved from soil in Benin. Arch Microbiol 200, 589–601 (2018). https://doi.org/10.1007/s00203-017-1470-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1470-2

Keywords

Navigation