Skip to main content

Advertisement

Log in

Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Shewanella oneidensis is a Gram-negative facultative anaerobe that can use a wide variety of terminal electron acceptors for anaerobic respiration. In this study, S. oneidensis degQ gene, encoding a putative periplasmic serine protease, was cloned and expressed. The activity of purified DegQ was inhibited by diisopropyl fluorophosphate, a typical serine protease-specific inhibitor, indicating that DegQ is a serine protease. In-frame deletion and subsequent complementation of the degQ were carried out to examine the effect of envelope stress on the production of outer membrane vesicles (OMVs). Analysis of periplasmic proteins from the resulting S. oneidensis strain showed that deletion of degQ induced protein accumulation and resulted in a significant decrease in protease activity within the periplasmic space. OMVs from the wild-type and mutant strains were purified and observed by transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the OMVs showed a prominent band at ~37 kDa. Nanoliquid chromatography–tandem mass spectrometry analysis identified three outer membrane porins (SO3896, SO1821, and SO3545) as dominant components of the band, suggesting that these proteins could be used as indices for comparing OMV production by S. oneidensis strains. Quantitative evaluation showed that degQ-deficient cells had a fivefold increase in OMV production compared with wild-type cells. Thus, the increased OMV production following the deletion of DegQ in S. oneidensis may be responsible for the increase in envelope stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77:4035–4041. doi:10.1128/aem.02463-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai J, Wei H, Tian C, Damron FH, Zhou J, Qiu D (2015) An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis. BMC Microbiol 15:34. doi:10.1186/s12866-015-0357-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157

    Article  CAS  PubMed  Google Scholar 

  • Fennessey CM, Jones ME, Taillefert M, DiChristina TJ (2010) Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1. Appl Environ Microbiol 76:2425–2432. doi:10.1128/aem.03066-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603. doi:10.1038/nrmicro1947

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y, He Z, Nealson KH, Fredrickson JK, Tiedje JM, Romine M, Zhou J (2010) Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb Biotechnol 3:455–466. doi:10.1111/j.1751-7915.2010.00181.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao T, Ju L, Yin J, Gao H (2015) Positive regulation of the Shewanella oneidensis OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur. Sci Rep 5:14263. doi:10.1038/srep14263

    Article  PubMed  PubMed Central  Google Scholar 

  • Gujrati V, Kim S, Kim SH, Min JJ, Choy HE, Kim SC, Jon S (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8:1525–1537. doi:10.1021/nn405724x

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123. doi:10.1038/nbt749

    Article  CAS  PubMed  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J Bacteriol 92:1206–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, Gho YS (2007) Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:3143–3153. doi:10.1002/pmic.200700196

    Article  CAS  PubMed  Google Scholar 

  • Lipinska B, Zylicz M, Georgopoulos C (1990) The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 172:1791–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier TM, Myers CR (2004) The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. BMC Microbiol 4:23. doi:10.1186/1471-2180-4-23

    Article  PubMed  PubMed Central  Google Scholar 

  • McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558. doi:10.1111/j.1365-2958.2006.05522.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBroom AJ, Johnson AP, Vemulapalli S, Kuehn MJ (2006) Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J Bacteriol 188:5385–5392. doi:10.1128/JB.00498-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CR, Myers JM (1994) Ferric iron reduction-linked growth yields of Shewanella putrefaciens MR-1. J Appl Bacteriol 76:253–258

    Article  CAS  PubMed  Google Scholar 

  • Myers JM, Myers CR (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321. doi:10.1126/science.240.4857.1319

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1990) Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J Bacteriol 172:6232–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen MH, Ojima Y, Sakka M, Sakka K, Taya M (2014) Probing of exopolysaccharides with green fluorescence protein-labeled carbohydrate-binding module in Escherichia coli biofilms and flocs induced by bcsB overexpression. J Biosci Bioeng 118:400–405. doi:10.1016/j.jbiosc.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  • Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F (1982) Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun 37:151–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146

    Article  CAS  PubMed  Google Scholar 

  • Quan S, Hiniker A, Collet J-F, Bardwell CAJ (2013) Isolation of bacteria envelope proteins. In: Delcour AH (ed) Bacterial cell surfaces: methods and protocols. Springer, Berlin, pp 359–366

    Chapter  Google Scholar 

  • Rothfield L, Pearlman-Kothencz M (1969) Synthesis and assembly of bacterial membrane components. A lipopolysaccharide–phospholipid–protein complex excreted by living bacteria. J Mol Biol 44:477–492

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2013) Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol 195:4161–4173. doi:10.1128/jb.02192-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619. doi:10.1038/nrmicro3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Sullivan CJ, Kuehn MJ (2013) Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry 52:3031–3040. doi:10.1021/bi400164t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secades P, Guijarro JA (1999) Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl Environ Microbiol 65:3969–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundararajan A, Kurowski J, Yan T, Klingeman DM, Joachimiak MP, Zhou J, Naranjo B, Gralnick JA, Fields MW (2011) Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth. Appl Environ Microbiol 77:4647–4656. doi:10.1128/aem.03003-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy KH, Chung CH, Goldberg AL (1983) Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Arch Biochem Biophys 224:543–554

    Article  CAS  PubMed  Google Scholar 

  • Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987) High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61:63–74

    Article  CAS  PubMed  Google Scholar 

  • Wensink J, Witholt B (1981) Identification of different forms of the murein-bound lipoprotein found in isolated outer membranes of Escherichia coli. Eur J Biochem 113:349–357

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol Lett 163:223–228. doi:10.1111/j.1574-6968.1998.tb13049.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the Noda Institute for Scientific Research. We thank Dr. Muranaka at the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan, for assistance with TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Ojima.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Electrophoresis of the degQ fragment amplified from genomic DNA isolated from S. oneidensis wild-type (lane 1) and ΔdegQ (lane 2) strains. Lane M; HindIII-digested λ DNA marker (TIFF 1036 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojima, Y., Mohanadas, T., Kitamura, K. et al. Deletion of degQ gene enhances outer membrane vesicle production of Shewanella oneidensis cells. Arch Microbiol 199, 415–423 (2017). https://doi.org/10.1007/s00203-016-1315-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1315-4

Keywords

Navigation