Skip to main content
Log in

New constructions of optimal frequency hopping sequences

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Frequency hopping sequences (FHSs) are employed to mitigate the interferences caused by the hits of frequencies in frequency hopping spread spectrum systems. In this paper, four new constructions for FHSs are presented, including a direct construction of FHSs by using cyclotomic cosets and three extension constructions of FHSs by using units of rings and multiplicative groups of finite fields. By these constructions, a number of series of new FHSs are then produced. These FHSs are optimal with respect to the Lempel-Greenberger bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, J., Buratti, M., Ji, L.: A note on almost partitioned difference families. Bull. Inst. Combin. Appl. 93, 45–51 (2021)

    MathSciNet  Google Scholar 

  2. Bao, J., Ji, L.: New families of optimal frequency hopping sequence sets. IEEE Trans. Inf. Theory 62(9), 5209–5224 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bao, J., Ji, L.: Frequency hopping sequences with optimal partial Hamming correlation. IEEE Trans. Inf. Theory 62(6), 3768–3783 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cai, H., Zeng, X., Helleseth, T., Tang, X., Yang, Y.: A new construction of zero-difference balanced functions and its applications. IEEE Trans. Inf. Theory 59(8), 5008–5015 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cai, H., Zhou, Z., Tang, X., Miao, Y.: Zero-difference balanced functions with new parameters and their applications. IEEE Trans. Inf. Theory 63(7), 4379–4387 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chu, W., Colbourn, C.J.: Optimal frequency-hopping sequences via cyclotomy. IEEE Trans. Inf. Theory 51(3), 1139–1141 (2005)

    Article  MathSciNet  Google Scholar 

  7. Chung, J.-H., Gong, G., Yang, K.: New classes of optimal frequency-hopping sequences by composite lengths. IEEE Trans. Inf. Theory 60(6), 3688–3697 (2014)

    Article  Google Scholar 

  8. Chung, J.-H., Han, Y.K., Yang, K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 55(12), 5783–5791 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chung, J.-H., Yang, K.: \(k\)-fold cyclotomy and its application to frequency-hopping sequences. IEEE Trans. Inf. Theory 57(4), 2306–2317 (2011)

    Article  MathSciNet  Google Scholar 

  10. Chung, J.-H., Yang, K.: Optimal frequency-hopping sequences with new parameters. IEEE Trans. Inf. Theory 56(4), 1685–1693 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ding, C., Fuji-Hara, R., Fujiwara, Y., Jimbo, M., Mishima, M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55(7), 3297–3304 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ding, C., Moisio, M.J., Yuan, J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53(7), 2606–2610 (2007)

    Article  MathSciNet  Google Scholar 

  13. Ding, C., Yang, Y., Tang, X.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 56(7), 3605–3612 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ding, C., Yin, J.: Sets of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 54(8), 3741–3745 (2008)

    Article  MathSciNet  Google Scholar 

  15. Fuji-Hara, R., Miao, Y., Mishima, M.: Optimal frequency hopping sequences: A combinatorial approach. IEEE Trans. Inf. Theory 50(10), 2408–2420 (2004)

    Article  MathSciNet  Google Scholar 

  16. Ge, G., Fuji-Hara, R., Miao, Y.: Further combinatorial constructions for optimal frequency-hopping sequences. J. Combin. Theory Ser. A 113(8), 1699–1718 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ge, G., Miao, Y., Yao, Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55(2), 867–879 (2009)

    Article  MathSciNet  Google Scholar 

  18. Han, Y.K., Yang, K.: On the sidel’nikov sequences as frequency-hopping sequences. IEEE Trans. Inf. Theory 55(9), 4279–4285 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kumar, P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory 34(1), 146–151 (1988)

    Article  MathSciNet  Google Scholar 

  20. Lempel, A., Greenberger, H.: Families of sequences with optimal Hamming-correlation properties. IEEE Trans. Inf. Theory 20(1), 90–94 (1974)

    Article  MathSciNet  Google Scholar 

  21. Liu, F., Peng, D., Zhou, Z., Tang, X.: New constructions of optimal frequency hopping sequences with new parameters. Adv. Math. Commun. 7(1), 91–101 (2013)

    Article  MathSciNet  Google Scholar 

  22. Niu, X., Xing, C.: New extension constructions of optimal frequency-hopping sequence sets. IEEE Trans. Inf. Theory 65(9), 5846–5855 (2019)

    Article  MathSciNet  Google Scholar 

  23. Niu, X., Xing, C., Liu, Y., Zhou, L.: A construction of optimal frequency hopping sequence set via combination of multiplicative and additive groups of finite fields. IEEE Trans. Inf. Theory 66(8), 5310–5315 (2020)

    Article  MathSciNet  Google Scholar 

  24. Ren, W., Fu, F., Zhou, Z.: New sets of frequency-hopping sequences with optimal Hamming correlation. Des. Codes Cryptogr. 72(2), 423–434 (2014)

    Article  MathSciNet  Google Scholar 

  25. Udaya, P., Siddiqi, M.U.: Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44(4), 1492–1503 (1998)

    Article  MathSciNet  Google Scholar 

  26. Xu, S., Cao, X., Mi, J., Tang, C.: More cyclotomic constructions of optimal frequency hopping sequences. Adv. Math. Commun. 13(3), 373–391 (2019)

    Article  MathSciNet  Google Scholar 

  27. Xu, S., Cao, X., Xu, G., Tang, C.: Two classes of optimal frequency-hopping sequences with new parameters. Appl. Algebra Eng. Commun. Comput. 30(1), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  28. Yang, Y., Tang, X., Udaya, P., Peng, D.: New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory 57(11), 7605–7613 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zeng, X., Cai, H., Tang, X., Yang, Y.: A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 58(7), 4899–4907 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zeng, X., Cai, H., Tang, X., Yang, Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59(5), 3237–3248 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhou, Z., Tang, X., Peng, D., Parampalli, U.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 57(6), 3831–3840 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and two anonymous reviewers for their insightful comments and invaluable advice that greatly improved the paper. The authors also thank Prof. L. Ji and Prof. X. Wang for their helpful comments. Without their comments and advice, the paper could not appear in the current form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjun Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by NSFC Grants 11701303, 11971252, Natural Science Foundation of Ningbo under Grant 202003N4141, the K. C. Wong Magna Fund in Ningbo University.

Appendices

Appendix A. Proof of Lemma 16

Proof

Since \(a\not \equiv b \pmod p\), we have \(Nj+a\not \equiv 0\pmod p\) or \(Nj+b\not \equiv 0\pmod p\). By Lemma 14, \(Y(Nj+a)=Y(Nj+b)\) only if \(Nj+a\not \equiv 0\pmod p\) and \(Nj+b\not \equiv 0\pmod p\). When \(Y(Nj+a)=Y(Nj+b)\) for some j, \(0\le j<pv\), we have

$$\begin{aligned} Y(Nj+a)=Y(Nj+b)=\psi (c_j, d_j)\ \mathrm{for\ some}\ c_j\in {\mathbb {Z}}_N, d_j\in {\mathbb {Z}}_v. \end{aligned}$$

Firstly, we show that there exist at most \(\frac{p-1}{N}\) solutions \((j_a, j_b)\) with \(j_a, j_b\in \{0,1,\ldots ,p-2\}\) and \(j_a\ne j_b\) that satisfy the following equations:

$$\begin{aligned} \begin{aligned} \langle Nj+a \rangle _p=\alpha ^{j_a}, \ \langle Nj+b \rangle _p=\alpha ^{j_b}, \ \langle Nj+a \rangle _N=\langle j_a+c_j\rangle _N \ \mathrm{and} \ \langle Nj+b \rangle _N=\langle j_b+c_j\rangle _N. \end{aligned} \end{aligned}$$
(4)

In view of Eq. (4), we have \(\langle {j_a}-{j_b} \rangle _N=\langle a-b \rangle _N\). Then there exists some integer s, \(0\le s<\frac{p-1}{N}\), such that \(\langle {j_a}-{j_b} \rangle _{p-1}=\langle a-b+Ns \rangle _{p-1}\) since \(N|p-1\). By Eq. (4), we have

$$\begin{aligned} \begin{aligned} \langle a-b \rangle _p=\alpha ^{j_b}\big ( \alpha ^{j_a-j_b}-1\big )=\alpha ^{j_b}\big ( \alpha ^{a-b+Ns}-1\big ). \end{aligned} \end{aligned}$$
(5)

For each integer s with \(\langle a-b+Ns\rangle _{p-1}\ne 0\), there exists unique element \(j_b\in {\mathbb {Z}}_{p-1}\) that satisfies Eq. (5). Thus, there are at most \(\frac{p-1}{N}\) pairs of elements \((s, j_b)\) satisfying Eq. (5). Since \(\langle {j_a}-{j_b} \rangle _{p-1}=\langle a-b+Ns \rangle _{p-1}\), there are at most \(\frac{p-1}{N}\) pairs of elements \((j_a, j_b)\) satisfying the following equations:

$$\begin{aligned} \langle Nj+a \rangle _p=\alpha ^{j_a}, \ \langle Nj+b \rangle _p=\alpha ^{j_b} \ \mathrm{and} \ \langle a-b \rangle _N=\langle j_a-j_b\rangle _N. \end{aligned}$$

Hence, there exist at most \(\frac{p-1}{N}\) solutions \((j_a, j_b)\) with \(j_a, j_b\in \{0,1,\ldots ,p-2\}\) and \(j_a\ne j_b\) that satisfy Eq. (4).

Secondly, we show that there exists a unique element \(j\in {\mathbb {Z}}_v\) that satisfies the following Equations

$$\begin{aligned} \begin{aligned} \langle Nj+a \rangle _v=d\theta _{j_a} \ \mathrm{and}\ \langle Nj+b \rangle _v=d\theta _{j_b} \end{aligned} \end{aligned}$$
(6)

for each pair of elements \((j_a, j_b)\) with \(j_a\ne j_b.\)

Since \(j_a\ne j_b\), then it holds that

$$\begin{aligned} \theta _{j_a}-\theta _{j_b}\in U({\mathbb {Z}}_v). \end{aligned}$$

Thus, we can get the unique elements \(j\in {\mathbb {Z}}_v\) and \(d\in {\mathbb {Z}}_v\) that satisfies Eq. (6), where

$$\begin{aligned} d=\langle a-b \rangle _v\cdot \big (\theta _{j_a}-\theta _{j_b}\big )^{-1}\ \mathrm{and}\ \langle j \rangle _v= \big (d\theta _{j_a}-\langle a\rangle _v \big )\cdot N^{-1}. \end{aligned}$$

Finally, we show that

$$\begin{aligned} \sum \limits _{i=0}^{pv-1}h[Y(Ni+a), Y(Ni+b)]\le \frac{p-1}{N}. \end{aligned}$$

For each pair of elements \((j_a, j_b)\) with \(j_a\ne j_b\), there exists at most a \(j\in {\mathbb {Z}}_p\) satisfying Equation (4) and a \(j'\in {\mathbb {Z}}_{v}\) satisfying Equations (6). Then there exists at most a \(i\in {\mathbb {Z}}_{pv}\) satisfying \(Y(Ni+a)=Y(Ni+b)\) since \({\mathbb {Z}}_{pv}\cong {\mathbb {Z}}_{p}\times {\mathbb {Z}}_{v}\). Since there exist at most \(\frac{p-1}{N}\) pairs of elements \((j_a, j_b)\) that satisfy Equation (4), then there exist at most \(\frac{p-1}{N}\) elements \(i\in {\mathbb {Z}}_{pv}\) such that \(Y(Ni+a)= Y(Ni+b)\). Hence, we have

$$\begin{aligned} \sum \limits _{i=0}^{pv-1}h[Y(Ni+a), Y(Ni+b)]\le \frac{p-1}{N}. \end{aligned}$$

Appendix B. Proof of Lemma 19

Proof

Since e=lcm\((2e_1,2e_2)\) and \(e_1, e_2\) are two odds, we have \((2e_1)|e\) and \((2e_2)|e\). By the definition of \(B_{(y,i)}^1\), \(B_{(y,j)}^2\) and Eq. (3), it holds that

$$\begin{aligned} \begin{array}{l} \bigcup \limits _{y\in S} \bigcup \limits _{0\le i<\frac{e}{2e_1}}B_{(y,i)}^1 \cup \bigcup \limits _{y\in S} \bigcup \limits _{0\le j<\frac{e}{2e_2}}B_{(y,j)}^2\\ \quad =\bigcup \limits _{y\in S} \bigcup \limits _{0\le i<\frac{e}{2e_1}}\{yg^{2i+\frac{e}{e_1}k}:~0\le k<e_1\} \cup \bigcup \limits _{y\in S} \bigcup \limits _{0\le j<\frac{e}{2e_2}}\{yg^{1+2j+\frac{e}{e_2}k}:~0\le k<e_2\}\\ \quad =\bigcup \limits _{y\in S} \{yg^{2i}:~0\le i<\frac{e}{2}\} \cup \bigcup \limits _{y\in S} \{yg^{1+2j}:~0\le j<\frac{e}{2}\}\\ \quad =\bigcup \limits _{y\in S} \{yg^{i}:~0\le i <e\} \\ \quad ={\mathbb {Z}}_v{\setminus } \{0\}. \end{array} \end{aligned}$$

Appendix C. Proof of Lemma 21

Proof

In the following, we only prove the first case. Another case can be handled similarly. By the definition of g and \((2e_1)|e\), we have

$$\begin{aligned} \begin{array}{l} \sum \limits _{y\in S} \sum \limits _{0\le i<\frac{e}{2e_1}}|B_{(y,i)}^1\cap \big (a+ B_{(y,i)}^1\big )|\\ \quad =\sum \limits _{y\in S} \sum \limits _{0\le i<\frac{e}{2e_1}}|\{yg^{2i+\frac{e}{e_1}k}:~0\le k<e_1\}\cap \{a+yg^{2i+\frac{e}{e_1}k}:~0\le k<e_1\}|\\ \quad =\sum \limits _{y\in S} \sum \limits _{0\le i<\frac{e}{2e_1}}|\{yg^{2i+\frac{e}{e_1}k}(g^{\frac{e}{e_1}k'}-1):~0\le k<e_1,\ 1\le k'<e_1\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1):~0\le i<\frac{e}{2},\ 1\le k'<e_1\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ yg^{2i}(g^{e-\frac{e}{e_1}k'}-1):~0\le i<\frac{e}{2},\ 1\le k' \le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ yg^{2i+e-\frac{e}{e_1}k'}(1-g^{\frac{e}{e_1}k'}):~0\le i<\frac{e}{2},\ 1\le k' \le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ yg^{2i}(1-g^{\frac{e}{e_1}k'}):~0\le i<\frac{e}{2},\ 1\le k' \le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ -yg^{2i}(g^{\frac{e}{e_1}k'}-1):~0\le i <\frac{e}{2},\ 1\le k'\le \frac{e_1-1}{2}\}\cap \{a\}|. \end{array} \end{aligned}$$

Since \(-1=g^{\frac{e}{2}}\), \(e\equiv 2\pmod 4\) and Equation (3) , we have

$$\begin{aligned} \begin{array}{l} \sum \limits _{y\in S} \sum \limits _{0\le i<\frac{e}{2e_1}}|B_{(y,i)}^1\cap \big (a+ B_{(y,i)}^1\big )|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ -yg^{2i}(g^{\frac{e}{e_1}k'}-1):~0\le i<\frac{e}{2},\ 1\le k'\le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{2i}(g^{\frac{e}{e_1}k'}-1),\ yg^{\frac{e}{2}+2i}(g^{\frac{e}{e_1}k'}-1):~0\le i<\frac{e}{2},\ 1\le k'\le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\sum \limits _{y\in S}|\{yg^{i}(g^{\frac{e}{e_1}k'}-1):~0\le i <e,\ 1\le k'\le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =|\{x(g^{\frac{e}{e_1}k'}-1):~x\in {\mathbb {Z}}_v{\setminus } \{0\},\ 1\le k'\le \frac{e_1-1}{2}\}\cap \{a\}|\\ \quad =\frac{e_1-1}{2}. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Bao, J. New constructions of optimal frequency hopping sequences. AAECC 35, 407–432 (2024). https://doi.org/10.1007/s00200-022-00555-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-022-00555-6

Keywords

Mathematics Subject Classification

Navigation