Skip to main content

Advertisement

Log in

Inflammatory diseases and bone fragility

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Systemic osteoporosis and increased fracture rates have been described in chronic inflammatory diseases such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, inflammatory bowel diseases, and chronic obstructive pulmonary disease. Most of these patients receive glucocorticoids, which have their own deleterious effects on bone. However, the other main determinant of bone fragility is the inflammation itself, as shown by the interactions between the inflammatory mediators, the actors of the immune system, and the bone remodelling. The inflammatory disease activity is thus on top of the other well-known osteoporotic risk factors in these patients. Optimal control of inflammation is part of the prevention of osteoporosis, and potent anti-inflammatory drugs have positive effects on surrogate markers of bone fragility. More data are needed to assess the anti-fracture efficacy of a tight control of inflammation in patients with a chronic inflammatory disorder. This review aimed at presenting different clinical aspects of inflammatory diseases which illustrate the relationships between inflammation and bone fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geusens P, Goldring SR, Briot K, Roux C (2016) The role of the immune system in the development of osteoporosis and fracture risk. In: Lorenzo J (ed) Osteoimmunology: interactions of the immune and skeletal systems, 2nd edn. Elsevier, pp 187–214

  2. Tetelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  Google Scholar 

  3. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  CAS  PubMed  Google Scholar 

  4. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al (1999) Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoproteogerin ligand. Nature 402:304–309

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNFα induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Axmann R, Böhm C, Krönke G, Zwerina, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60:2747–2756

    Article  CAS  PubMed  Google Scholar 

  8. Greenfield EM, Gornik SA, Horowitz MC, Donahue HJ, Shaw SM (1993) Regulation of cytokine expression in osteoblasts by parathyroid hormone: rapid stimulation of interleukin-6 and leukemia inhibitory factor mRNA. J Bone Miner Res 8:1163–1171

    Article  CAS  PubMed  Google Scholar 

  9. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y et al (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12:R29

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pacifici R (2016) The role of IL-17 and TH17 cells in the bone catabolic activity of PTH. Front Immunol 7:57

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G (2007) Treg cells suppress ostoclast formation. A new link between the immune system and bone. Arthritis Rheum 56:4104–4112

    Article  CAS  PubMed  Google Scholar 

  12. Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J, Hermann M, Smolen J, Schett G (2008) CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis 67:1603–1609

    Article  CAS  PubMed  Google Scholar 

  13. Harre U, Georgess D, Bang H, Bozec A, Axamann R, Ossipova E et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F et al (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860

    Article  PubMed  Google Scholar 

  15. Sokolove J, Zhao X, Chandra PE, Robinson WH (2011) Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum 63:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krishnamurthy A, Joshua V, Haj Hensvold A, Jin T, Sun M, Vivar N, Ytterberg AJ et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729

    Article  CAS  PubMed  Google Scholar 

  17. Choi Y, Mi Woo K, Ko SH, Lee YJ, Park SJ, Kim HM et al (2001) Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8+ T cells. Eur J Immunol 31:2179–2188

    Article  CAS  PubMed  Google Scholar 

  18. Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C et al (2004) Immature dentritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood 104:4029–4037

    Article  CAS  PubMed  Google Scholar 

  19. Haiyan L, Hong S, Qian J, Zheng Y, Yang J, Yi Q (2010) Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood 116:210–217

    Article  Google Scholar 

  20. Herman S, Mueller R, Kronke G, Zwerina J, Redlich K, Hueber A, Gelse H, Neumann E, Mueller-Ladner U, Schett G (2008) OSCAR, a key co-stimulation molecule for osteoclasts, is induced in patients with rheumatoid arthritis. Arthritis Rheum 58:3041–3050

    Article  CAS  PubMed  Google Scholar 

  21. Wong PKK, Quin JMW, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleudin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced ostoclastogenesis. Arthritis Rheum 54:158–168

    Article  CAS  PubMed  Google Scholar 

  22. Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stulnig TM et al (2009) Estrogen-dependent and C-C chemokine receptor-2 dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15:417–424

    Article  CAS  PubMed  Google Scholar 

  23. Charactcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL (2007) Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22:724–729

    Article  Google Scholar 

  24. Bedi B, Li JY, Tawfeek H, Baek KH, Adams J, Vangara SS et al (2012) Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci U S A 109:E725–E733

  25. Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ et al (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2aA) is inhibited by tumor necrosis factor-α. J Biol Chem 277:2695–2701

    Article  CAS  PubMed  Google Scholar 

  26. Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M et al (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159

    Article  CAS  PubMed  Google Scholar 

  27. Chen XX, Baum W, Dwyer D, Stock M, Schwabe K, Ke HZ et al (2013) Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis 72:1732–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wijbrandts CA, Klaasen R, Dijkgraaf MGW, Gerlag DM, van Eck-Smit BLF, Tak PP (2009) Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis 68:373–376.57

    Article  CAS  PubMed  Google Scholar 

  29. Güler-Yüksel M, Bijsterbosch J, Goekoop-Ruiterman YP et al (2008) Changes in bone mineral density in patients with recent onset, active rheumatoid arthritis. Ann Rheum Dis 67:823–828

    Article  PubMed  Google Scholar 

  30. Güler-Yüksel M, Allaart CF, Goekoop-Ruiterman YP et al (2009) Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis 68:330–336

    Article  PubMed  Google Scholar 

  31. Schett G, Firestein GS (2010) Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann Rheum Dis 69:787–789

    Article  PubMed  Google Scholar 

  32. Haugeberg G, Green MJ, Quinn MA et al (2006) Hand bone loss in early undifferentiated arthritis: evaluating bone mineral density loss before the development of rheumatoid arthritis. Ann Rheum Dis 65:736–740

    Article  CAS  PubMed  Google Scholar 

  33. van Staa TP, Geusens P, Bijlsma JW et al (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54:3104–3112

    Article  PubMed  Google Scholar 

  34. Weiss RJ, Wick MC, Ackermann PW, Montgomery SM (2010) Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases—a case-control study with 53,108 patients with fracture. J Rheumatol 37:2247–2250

    Article  PubMed  Google Scholar 

  35. Amin S, Gabriel SE, Achenbach SJ, Atkinson EJ, Melton LJ 3rd (2013) Are young women and men with rheumatoid arthritis at risk for fragility fractures? A population-based study. J Rheumatol 40:1669–1676

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ochi K, Inoue E, Furuya T, Ikari K, Toyama Y, Taniguchi A, Yamanaka H, Momohara S (2015) Ten-year incidences of self-reported non-vertebral fractures in Japanese patients with rheumatoid arthritis: discrepancy between disease activity control and the incidence of non-vertebral fracture. Osteoporos Int 26:961–968

    Article  CAS  PubMed  Google Scholar 

  37. Klop C, de Vries F, Bijlsma JW, Leufkens HG, Welsing PM (2016) Predicting the 10-year risk of hip and major osteoporotic fracture in rheumatoid arthritis and in the general population: an independent validation and update of UK FRAX without bone mineral density. Ann Rheum Dis 75:2095–2100

  38. Lekamwasam S, Adachi JD, Agnusdei D et al (2012) A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int 23:2257–2276

    Article  CAS  PubMed  Google Scholar 

  39. Saag KG, Zanchetta JR, Devogelaer JP, Adler RA, Eastell R, See K, Krege JH, Krohn K, Warner MR (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60:3346–3355

    Article  CAS  PubMed  Google Scholar 

  40. Vis M, Güler-Yüksel M, Lems WF (2012) Can bone loss be prevented in RA? Osteoporos Int 24:2541–2553

    Article  Google Scholar 

  41. Manara M, Sinigaglia L (2015) Bone and TNF in rheumatoid arthritis: clinical implications. RMD Open 1(Suppl 1):e000065. doi:10.1136/rmdopen-2015-000065

  42. Van der Weijden MAC, Claushuis TAM, Nazari T, Lems WF, Dijkmans BAC, Van der Horst-Bruinsma EI (2012) High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin Rheumatol 31:1529–1535

    Article  PubMed  PubMed Central  Google Scholar 

  43. El Maghraoui A, Borderie D, Cherruau B, Edouard R, Dougados M, Roux C (1999) Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J Rheumatol 26:2205–2209

    PubMed  Google Scholar 

  44. Maillefert JF, Aho S, El Maghraoui A, Dougados M, Roux C (2001) Changes in bone density in patients with ankylosing spondylitis: a 2 year follow-up study. Osteoporos Int 12:605–609

    Article  CAS  PubMed  Google Scholar 

  45. Gratacos J, Collado A, Pons F, Osaba M, Sammarti R, Roqué M et al (1999) Significant loss of bone mass in patients with early, active ankylosing spondylitis. A follow-up study. Arthritis Rheum 42:2319–2324

    Article  CAS  PubMed  Google Scholar 

  46. Briot K, Durnez A, Paternotte S, Miceli-Richard C, Dougados M, Roux C (2013) Bone oedema on MRI is highly associated with low bone mineral density in patients with early inflammatory back pain: results from the DESIR cohort. Ann Rheum Dis 72:1914–1919

    Article  PubMed  Google Scholar 

  47. Akgöl G, Kamanli A, Ozgocmen S (2014) Evidence for inflammation-induced bone loss in non-radiographic axial spondyloarthritis. Rheumatolojy (Oxford) 53:497–501

    Article  Google Scholar 

  48. Forien M, Molto A, Etcheto A et al (2015) Bone mineral density in patients with symptoms suggestive of spondyloarthritis. Osteoporos Int 26:1647–1653

    Article  CAS  PubMed  Google Scholar 

  49. Vosse D, Landewé R, van der Heijde D, van der Linden S, van Staa TP, Geusens P (2009) Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. Ann Rheum Dis 68:1839–1842

    Article  CAS  PubMed  Google Scholar 

  50. Geusens P, De Winter L, Quaden D, Vanhoof J, Vosse D, van den Bergh J, Somers V (2015) The prevalence of vertebral fractures in spondyloarthritis: relation to disease characteristics, bone mineral density, syndesmophytes and history of back pain and trauma. Arthritis Res Ther 17:294

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stupphann D, Ranner M, Krenbeck D et al (2008) Intracellular and surface RANK L are differentially regulated in patients with ankylosing spondylitis. Rheumatol Int 28:987–993

    Article  CAS  PubMed  Google Scholar 

  52. Briot K, Garnero P, Le Henanff A, Dougados M, Roux C (2005) Body weight, body composition and bone turnover changes in patients with spondyloarthropathy receiving anti-TNF alpha treatment. Ann Rheum Dis 64:1137–1140

  53. Arends S, Spoorenberg A, Bruyn GAW et al (2011) The relation between bone mineral density, bone turnover markers, and vitamin D status in ankylosing spondylitis patients with active disease: a cross-sectional analysis. Osteoporos Int 22:1431–1439

    Article  CAS  PubMed  Google Scholar 

  54. Sherlock JP, Joyce-Shaikh B, Turner SP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4−CD8−entheseal resident T cells. Nat Med 18:1069–1076

    Article  CAS  PubMed  Google Scholar 

  55. Muñoz-Ortego J, Vestergaard P, Rubio JB, Wordsworth P, Judge A, Javaid MK, Arden NK, Cooper C, Díez-Pérez A, Prieto-Alhambra D (2014) Ankylosing spondylitis is associated with an increased risk of vertebral and nonvertebral clinical fractures: a population-based cohort study. J Bone Miner Res 29(8):1770–1776

  56. Prieto-Alhambra D, Muñoz-Ortego J, De Vries F, Vosse D, Arden NK, Bowness P, Cooper C, Diez-Perez A, Vestergaard P (2015) Ankylosing spondylitis confers substantially increased risk of clinical spine fractures: a nationwide case-control study. Osteoporos Int 26(1):85–91

    Article  CAS  PubMed  Google Scholar 

  57. Briot K, Gossec L, Kolta S, Dougados M, Roux C (2008) Prospective assessment of body weight, body composition, and bone density changes in patients with spondyloarthropathy receiving anti-tumor necrosis factor-alpha treatment. J Rheumatol 35:855–861

    CAS  PubMed  Google Scholar 

  58. Durnez A, Paternotte S, Fechtenbaum J, Landewé RB, Dougados M, Roux C, Briot K (2013) Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year follow-up study. J Rheumatol 40:1712–1718

    Article  CAS  PubMed  Google Scholar 

  59. Haroon NN, Sriganthan J, Al Ghanim N et al (2014) Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin Arthritis Rheum 44:155–161

    Article  PubMed  Google Scholar 

  60. Briot K, Etcheto A, Miceli-Richard C, Dougados M, Roux C (2016) Bone loss in patients with early inflammatory back pain suggestive of spondyloarthritis: results from the prospective DESIR cohort. Rheumatology (Oxford) 55:335–422

    Article  Google Scholar 

  61. Rees F, Doherty M, Grainge M, Lanyon P, Davenport G, Zhang W (2015) Burden of comorbidity in systemic lupus erythematosus in the UK, 1999-2012. Arthritis Care Res (Hoboken) 68:819–827

    Article  Google Scholar 

  62. Bultink IEM (2012) Osteoporosis and fractures in systemic lupus erythematosus. Arthritis Care Res (Hoboken) 64:2–8

    Article  Google Scholar 

  63. Bultink IEM, Lems WF (2016) Lupus and fractures. Curr Opin Rheumatol 28:426–432

    Article  CAS  PubMed  Google Scholar 

  64. Bultink IE, Harvey NC, Lalmohamed A, Cooper C, Lems WF, van Staa TP, de Vries F (2014) Elevated risk of clinical fractures and associated risk factors in patients with systemic lupus erythematosus versus matched controls: a population-based study in the United Kingdom. Osteoporos Int 25:1275–1283

    Article  CAS  PubMed  Google Scholar 

  65. Carli L, Tani C, Spera V, Vagelli R, Vagnani S, Mazzantini M, Di Munno O, Mosca M (2016) Risk factors for osteoporosis and fragility fractures in patients with systemic lupus erythematosus. Lupus Sci Med 3:e000098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li EK, Tam LS, Griffith JF, Zhu TY, Li TK, Li M, Wong KC, Chan M, Lam CW, Chu FS, Wong KK, Leung PC, Kwok A (2009) High prevalence of asymptomatic vertebral fractures in Chinese women with systemic lupus erythematosus. J Rheumatol 36:1646–1652

    Article  PubMed  Google Scholar 

  67. Mendoza-Pinto C, García-Carrasco M, Sandoval-Cruz H, Muñoz-Guarneros M, Escárcega RO, Jiménez-Hernández M, Munguia-Realpozo P, Sandoval-Cruz M, Delezé-Hinojosa M, López-Colombo A, Cervera R (2009) Risk factors of vertebral fractures in women with systemic lupus erythematosus. Clin Rheumatol 28:579–585

    Article  PubMed  Google Scholar 

  68. Petri M (1995) Musculoskeletal complications of systemic lupus erythematosus in the Hopkins Lupus Cohort: an update. Arthritis Care Res 8:137–145

    Article  CAS  PubMed  Google Scholar 

  69. Bultink IE, Lems WF, Kostense PJ, Dijkmans BA, Voskuyl AE (2005) Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 54:2044–2050

    Article  Google Scholar 

  70. Jacobs J, Korswagen LA, Schilder AM, van Tuyl LH, Dijkmans BAC, Lems WF, Voskuyl AE, Bultink IEM (2013) Six-year follow-up study of bone mineral density in patients with systemic lupus erythematosus. Osteoporos Int 24:1827–1833

    Article  CAS  PubMed  Google Scholar 

  71. Svenungsson E, Fei GZ, Jensen-Urstad K, de Faire U, Hamsten A, Frostegard J (2003) TNF-alpha: a link between hypertriglyceridaemia and inflammation in SLE patients with cardiovascular disease. Lupus 12:454–461

    Article  CAS  PubMed  Google Scholar 

  72. Frostegard J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, Hörkkö S, Witztum JL (2005) Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 52:192–200

    Article  CAS  PubMed  Google Scholar 

  73. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 6:379–389

    Article  Google Scholar 

  74. Zhu TY, Griffith JF, Au SK, Tang XA, Kwok AW, Leung PC, Li EK, Tam LS (2014) Bone mineral density change in systemic lupus erytehmatosus: a 5-year followup study. J Rheumatol 41:1990–1997

    Article  PubMed  Google Scholar 

  75. Huisman AM, White KP, Algra A, Harth M, Vieth R, Jacobs JW, Bijlsma JW, Bell DA (2013) Vitamin D levels in women with systemic lupus erythematosus and fibromyalgia. J Rheumatol 11:2535–2539

    Google Scholar 

  76. Mok CC, Mak A, Ma KM (2005) Bone mineral density in postmenopausal Chinese patients with systemic lupus erythematosus. Lupus 14:106–112

    Article  CAS  PubMed  Google Scholar 

  77. Jacobs J, Voskuyl AE, Korswagen LA, Theunissen R, Cohen Tervaert JW, Bultink IEM (2015) The association between FOK-I vitamin D receptor gene polymorphisms and bone mineral density in patients with systemic lupus erythematosus. Clin Exp Rheumatol 33:0765

    Google Scholar 

  78. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN (2000) The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med 133:795–799

    Article  CAS  PubMed  Google Scholar 

  79. Vestergaard P, Mosekilde L (2002) Fracture risk in patients with celiac disease, Crohn’s disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark. Am J Epidemiol 156:1–10

    Article  PubMed  Google Scholar 

  80. Card T, West J, Hubbard R, Logan RF (2004) Hip fractures in patients with inflammatory bowel disease and their relationship to corticosteroid use: a population based cohort study. Gut 53:251–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leslie WD, Miller N, Rogala L, Bernstein CN (2009) Body mass and composition effect bone density in recently diagnosed inflammatory bowel disease: the Manitoba IBD Cohort Study. Inflamm Bowel Dis 15:39–46

    Article  PubMed  Google Scholar 

  82. Tsai MS, Lin CL, Tu YK, Lee PH, Kao CH (2015) Risks and predictors of osteoporosis in patients with inflammatory bowel diseases in an Asian population: a nationwide population-based cohort study. Int J Clin Pract 69:235–241

    Article  PubMed  Google Scholar 

  83. Targownik LE, Leslie WD, Carr R, Clara I, Miller N, Rogala L, Graff LA, Walker JR, Bernstein CN (2012) Longitudinal change in bone mineral density in a population-based cohort of patients with inflammatory bowel disease. Calcif Tissue Int 91:356–363

    Article  CAS  PubMed  Google Scholar 

  84. Ashcroft AJ, Cruickshank SM, Croucher PI, Perry MJ, Rollinson S, Lippitt JM, Child JA, Dunstan C, Felsburg PJ, Morgan GJ, Carding SR (2003) Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19:849–861

    Article  CAS  PubMed  Google Scholar 

  85. Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, Wolf AM, Tilg H (2005) The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 54:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh S, Cowen S, Hannan WJ, Ferguson A (1994) Low bone mineral density in Crohn’s disease, but not in ulcerative colitis, at diagnosis. Gastroenterology 107:1031–1039

    Article  CAS  PubMed  Google Scholar 

  87. Abitbol V, Roux C, Gillemant S, Valleur P, Hautefeuille P, Dougados M, Couturier D, Chaussade S (1998) Bone assessment in patients with ileal pouch-anal anastomosis for inflammatory bowel disease. Br J Surg:1551–1554

  88. Gupta S, Shen B (2013) Bone loss in patients with the ileostomy and ileal pouch for inflammatory bowel disease. Gastroenterol Rep (Oxf) 1:159–165

    Article  Google Scholar 

  89. Bernstein CN, Blanchard JF, Metge C, Yogendran M (2003) The association between corticosteroid use and development of fractures among IBD patients in a population-based database. Am J Gastroenterol 98:1797–1801

    Article  PubMed  Google Scholar 

  90. Abraham BP, Prasad P, Malaty HM (2014) Vitamin D deficiency and corticosteroid use are risk factors for low bone mineral density in inflammatory bowel disease patients. Dig Dis Sci 59:1878–1884

    Article  CAS  PubMed  Google Scholar 

  91. Roux C, Abitbol V, Chaussade S, Kolta S, Guillemant S, Dougados M, Amor B, Couturier D (1995) Bone loss in patients with inflammatory bowel disease: a prospective study. Osteoporos Int 5:156–160

    Article  CAS  PubMed  Google Scholar 

  92. Leslie WD, Miller N, Rogala L, Bernstein CN (2008) Vitamin D status and bone density in recently diagnosed inflammatory bowel disease: the Manitoba IBD Cohort Study. Am J Gastroenterol 103:1451–1459

    Article  CAS  PubMed  Google Scholar 

  93. Bernstein CN, Leslie WD, Leboff MS (2003) AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology 124:795–841

    Article  PubMed  Google Scholar 

  94. Melek J, Sakuraba A (2014) Efficacy and safety of medical therapy for low bone mineral density in patients with inflammatory bowel disease: a meta-analysis and systematic review. Clin Gastroenterol Hepatol 12:32–44.e5

    Article  PubMed  Google Scholar 

  95. Franchimont N, Putzeys V, Collette J, Vermeire S, Rutgeerts P, De Vos M, Van Gossum A, Franchimont D, Fiasse R, Pelckmans P, Malaise M, Belaiche J, Louis E (2004) Rapid improvement of bone metabolism after infliximab treatment in Crohn's disease. Aliment Pharmacol Ther 20(6):607–614

    Article  CAS  PubMed  Google Scholar 

  96. Majumdar SR, Villa-Roel C, Lyons KJ, Rowe BH (2010) Prevalence and predictors of vertebral fracture in patients with chronic obstructive pulmonary disease. Respir Med 104:260–266

  97. Harrison RA, Siminoski K, Vetkanayagam D, Majumdar SR (2007) Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. J Bone Miner Res 22:448–557

    Article  Google Scholar 

  98. Graat-Verboom L, Spruit MA, van den Borne BE et al (2009) CIRO Network. Correlates of osteoporosis in chronic obstructive pulmonary disease: an underestimated systemic component. Respir Med 103:1143–1151

    Article  PubMed  Google Scholar 

  99. Nutti R, Siviero P, Maggi S et al (2009) Vertebral fractures in patients with chronic obstructive pulmonary disease: the EOLO study. Osteoporos Int 20:989–998

    Article  Google Scholar 

  100. De Luise C, Brimacombe M, Pedersen L, Sorensen HT (2008) Chronic obstructive pulmonary disease and mortality following hip fracture: a population-based cohort study. Eur J Epidemiol 23:115–122

    Article  PubMed  Google Scholar 

  101. Mathioudakis AG, Amanetopoulou SG, Gialmanidis IP et al (2013) Impact of long-term treatement with low-dose inhaled corticosteroids on the bone mineral density of chronic obstructive pulmonary disease patients: aggravating or beneficial? Respirology 18:147–153

    Article  PubMed  Google Scholar 

  102. Bai P, Sun Y, Jin J, Hou J, Li R, Zhang Q, Wang Y (2011) Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir Res 12:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang PF, Pan L, Luo ZY, Zhao HJ, Cai SX (2013) Interrelationship of circulating matrix metalloproteinase-9, TNF-α, and OPG/RANK/RANKL systems in COPD patients with osteoporosis. COPD 10:650–656

    Article  PubMed  Google Scholar 

  104. Graat-Verboom L, van den Borne BEEM, Smeenk FWJM, Spruit MA, Wouters EFM (2011) Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. J Bone Miner Res 26:561–568

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Briot.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briot, K., Geusens, P., Em Bultink, I. et al. Inflammatory diseases and bone fragility. Osteoporos Int 28, 3301–3314 (2017). https://doi.org/10.1007/s00198-017-4189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4189-7

Keywords

Navigation