Skip to main content

Advertisement

Log in

Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone mineral density declines with increasing older age. We examined the levels of circulating factors known to regulate bone metabolism in healthy young and older adults. The circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin were positively associated with whole-body bone mineral density (WBMD) in older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young.

Introduction

This study aims to investigate the relationship between whole-body bone mineral density (WBMD) and levels of circulating factors with known roles in bone remodelling during ‘healthy’ ageing.

Methods

WBMD and fasting plasma concentrations of dickkopf-1, fibroblast growth factor-23, osteocalcin, osteoprotegerin, osteopontin and sclerostin were measured in 272 older subjects (69 to 81 years; 52% female) and 171 younger subjects (18–30 years; 53% female).

Results

WBMD was lower in old than young. Circulating osteocalcin was lower in old compared with young, while dickkopf-1, osteoprotegerin and sclerostin were higher in old compared with young. These circulating factors were each positively associated with WBMD in the older adults and the relationships remained after adjustment for covariates (r values ranging from 0.174 to 0.254, all p < 0.01). In multivariate regression, the body mass index, circulating sclerostin and whole-body lean mass together accounted for 13.8% of the variation with WBMD in the older adults. In young adults, dickkopf-1 and body mass index together accounted for 7.7% of variation in WBMD.

Conclusion

Circulating levels of dickkopf-1, osteocalcin, osteoprotegerin and sclerostin are positively associated with WBMD in community-dwelling older adults, despite the average WBMD being lower and circulating dickkopf-1, osteoprotegerin and sclerostin being higher in old than young.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genant HK et al (1999) Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int 10(4):259–264

    Article  CAS  PubMed  Google Scholar 

  2. Hofbauer LC et al (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140(9):4367–4370

    Article  CAS  PubMed  Google Scholar 

  3. Ferron M et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142(2):296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamiya N (2012) The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr Mol Pharmacol 5(2):153–163

    Article  CAS  PubMed  Google Scholar 

  5. Gaudio A et al (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95(5):2248–2253

    Article  CAS  PubMed  Google Scholar 

  6. Ke HZ et al (2012) Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr rev 33(5):747–783

    Article  CAS  PubMed  Google Scholar 

  7. Takei Y, Minamizaki T, Yoshiko Y (2015) Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol 2015:729352

    Article  PubMed  PubMed Central  Google Scholar 

  8. Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26(3):179–184

    CAS  PubMed  Google Scholar 

  9. McPhee JS et al (2013) Physiological and functional evaluation of healthy young and older men and women: design of the European MyoAge study. Biogerontology 14(3):325–337

    Article  PubMed  Google Scholar 

  10. Monroe DG et al (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492(1):1–18

    Article  CAS  PubMed  Google Scholar 

  11. Brunetti G et al (2016) Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-alpha. Osteoporos Int 27(7):2355–2365

    Article  CAS  PubMed  Google Scholar 

  12. Roforth MM et al (2014) Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone 59:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Butler JS et al (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop res 29(3):414–418

    Article  PubMed  Google Scholar 

  14. Szulc P et al (2013) Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J Bone Miner res 28(8):1760–1770

    Article  CAS  PubMed  Google Scholar 

  15. Garnero P et al (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24(2):489–494

    Article  CAS  PubMed  Google Scholar 

  16. Polyzos SA et al (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women—the six-month effect of risedronate and teriparatide. Osteoporos Int 23(3):1171–1176

    Article  CAS  PubMed  Google Scholar 

  17. Thorson S et al (2013) Sclerostin and bone strength in women in their 10th decade of life. J Bone Miner res 28(9):2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schett G et al (2003) Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum 48(7):2042–2051

    Article  CAS  PubMed  Google Scholar 

  19. Weitzmann MN (2013) The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo) 2013:125705

    Google Scholar 

  20. Jabbar S et al (2011) Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol 64(4):354–357

    Article  CAS  PubMed  Google Scholar 

  21. Oh KW et al (2005) Circulating osteoprotegerin and receptor activator of NF-kappaB ligand system are associated with bone metabolism in middle-aged males. Clin Endocrinol 62(1):92–98

    Article  CAS  Google Scholar 

  22. Rogers A et al (2002) Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab 87(10):4470–4475

    Article  CAS  PubMed  Google Scholar 

  23. Liu JM et al (2005) Relationships between the changes of serum levels of OPG and RANKL with age, menopause, bone biochemical markers and bone mineral density in Chinese women aged 20–75. Calcif Tissue Int 76(1):1–6

    Article  CAS  PubMed  Google Scholar 

  24. Samelson EJ et al (2008) Increased plasma osteoprotegerin concentrations are associated with indices of bone strength of the hip. J Clin Endocrinol Metab 93(5):1789–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stern A et al (2007) The sex-specific association of serum osteoprotegerin and receptor activator of nuclear factor kappaB legend with bone mineral density in older adults: the Rancho Bernardo study. Eur J Endocrinol 156(5):555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Modder UI et al (2011) Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner res 26(1):27–34

    Article  CAS  PubMed  Google Scholar 

  27. Modder UI et al (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner res 26(2):373–379

    Article  CAS  PubMed  Google Scholar 

  28. Mazziotti G et al (2006) Increased serum osteoprotegerin values in long-lived subjects: different effects of inflammation and bone metabolism. Eur J Endocrinol 154(3):373–377

    Article  CAS  PubMed  Google Scholar 

  29. Moester MJ et al (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87(2):99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Atalay S et al (2012) Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann lab med 32(1):23–30

    Article  CAS  PubMed  Google Scholar 

  31. Mora S et al (2015) Sclerostin and DKK-1: two important regulators of bone metabolism in HIV-infected youths. Endocrine 49(3):783–790

    Article  CAS  PubMed  Google Scholar 

  32. Fan B et al (2010) Does standardized BMD still remove differences between Hologic and GE-Lunar state-of-the-art DXA systems? Osteoporos Int 21(7):1227–1236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by funding from European Union FP7 (‘MYOAGE’, #223576) and Medical Research Council (MR/K025252/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. McPhee.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulson, J., Bagley, L., Barnouin, Y. et al. Circulating levels of dickkopf-1, osteoprotegerin and sclerostin are higher in old compared with young men and women and positively associated with whole-body bone mineral density in older adults. Osteoporos Int 28, 2683–2689 (2017). https://doi.org/10.1007/s00198-017-4104-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4104-2

Keywords

Navigation