Skip to main content

Advertisement

Log in

Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Collagen cross-linking, a major post-translational modification of collagen, plays important roles in the biological and biomechanical features of bone. Collagen cross-links can be divided into lysyl hydroxylase and lysyl oxidase-mediated enzymatic immature divalent cross-links, mature trivalent pyridinoline and pyrrole cross-links, and glycation- or oxidation-induced non-enzymatic cross-links (advanced glycation end products) such as glucosepane and pentosidine. These types of cross-links differ in the mechanism of formation and in function. Material properties of newly synthesized collagen matrix may differ in tissue maturity and senescence from older matrix in terms of cross-link formation. Additionally, newly synthesized matrix in osteoporotic patients or diabetic patients may not necessarily be as well-made as age-matched healthy subjects. Data have accumulated that collagen cross-link formation affects not only the mineralization process but also microdamage formation. Consequently, collagen cross-linking is thought to affect the mechanical properties of bone. Furthermore, recent basic and clinical investigations of collagen cross-links seem to face a new era. For instance, serum or urine pentosidine levels are now being used to estimate future fracture risk in osteoporosis and diabetes. In this review, we describe age-related changes in collagen cross-links in bone and abnormalities of cross-links in osteoporosis and diabetes that have been reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    CAS  PubMed  Google Scholar 

  2. Takahashi M, Oikawa M, Nagano A (2000) Effect of age and menopause on serum concentrations of pentosidine, an advanced glycation end product. J Gerontol A Biol Sci Med Sci 55:M137–M140

    CAS  PubMed  Google Scholar 

  3. Shiraki M, Kuroda T, Tanaka S et al (2008) Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 26:93–100

    CAS  PubMed  Google Scholar 

  4. Shiraki M, Urano T, Kuroda T et al (2008) The synergistic effect of bone mineral density and methylenetetrahydrofolate reductase (MTHFR) polymorphism (C677T) on fracture. J Bone Miner Metab 26:595–602

    CAS  PubMed  Google Scholar 

  5. Leboff MS, Narweker R, LaCroix A et al (2009) Homocysteine levels and risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab 94:1207–1213

    CAS  PubMed  Google Scholar 

  6. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM et al (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 35:2033–2041

    Google Scholar 

  7. McLean RR, Jacques PF, Selhub J et al (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    CAS  PubMed  Google Scholar 

  8. Blouin S, Thaler HW, Korninger C et al (2009) Bone matrix quality and plasma homocysteine levels. Bone 44:959–964

    CAS  PubMed  Google Scholar 

  9. Saito M, Fujii K, Marumo K (2006) Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif Tissue Int 79:160–168

    CAS  PubMed  Google Scholar 

  10. Gineyts E, Munoz F. Bertholon C et al (2009) Urinary levels of pentosidine and risk of fracture in post menopausal women: the OFELY study. Osteoporosis Int. doi:10.1007/s00198-009-0939-5

  11. Yamamoto M, Yamaguchi T, Yamauchi M et al (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 93:1013–1019

    CAS  PubMed  Google Scholar 

  12. Schwartz AV, Garnero P, Hillier TA et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386

    CAS  PubMed  Google Scholar 

  13. Lin AC, Goh MC (2002) Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy. Proteins 49:378–384

    CAS  PubMed  Google Scholar 

  14. Robins SP, Bailey AJ (1977) The chemistry of the collagen cross-links. Characterization of the products of reduction of skin, tendon and bone with sodium cyanoborohydride. Biochem J 163:339–346

    CAS  PubMed  Google Scholar 

  15. Uzawa K, Grzesik WJ, Nishiura T et al (1999) Differential expression of human lysyl hydroxylase genes, lysine hydroxylation, and cross-linking of type I collagen during osteoblastic differentiation in vitro. J Bone Miner Res 14:1272–1280

    CAS  PubMed  Google Scholar 

  16. Saito M, Soshi S, Tanaka T, Fujii K (2004) Intensity-related differences in collagen post-traslational modification in MC3T3–E1 osteoblasts after exposure to low and high intensity pulsed ultrasound. Bone 35:644–655

    CAS  PubMed  Google Scholar 

  17. Bank RA, Robins SP, Wijmenga C et al (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci U S A 96:1054–1058

    CAS  PubMed  Google Scholar 

  18. Saito M, Marumo K, Fujii K et al (1997) Single column high-performance liquid chromatographic-fluorescence detection of immature, mature and senescent cross-links of collagen. Anal Biochem 253:26–32

    CAS  PubMed  Google Scholar 

  19. Marumo K, Saito M, Yamagishi M, Fujii K (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons. Am J Sports Med 33:1166–1173

    PubMed  Google Scholar 

  20. Yamauchi M, Katz EP (1993) The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect Tissue Res 29:81–98

    CAS  PubMed  Google Scholar 

  21. Fujii K, Yamagishi T, Nagafuchi T et al (1994) Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc 2:229–233

    CAS  PubMed  Google Scholar 

  22. Yamauchi M, Katz EP, Mechanic GL (1986) Intermolecular cross-linking and stereospecific molecular packing in type I collagen fibrils of the periodontal ligament. Biochemistry 25:4907–4913

    CAS  PubMed  Google Scholar 

  23. Yamauchi M, Woodley DT, Mechanic GL (1988) Aging and cross-linking of skin collagen. Biochem Biophys Res Commun 152:898–903

    CAS  PubMed  Google Scholar 

  24. Yamauchi M, Shiiba M (2008) Lysine hydroxylation and cross-linking of collagen. Methods Mol Biol 446:95–108

    CAS  PubMed  Google Scholar 

  25. Yeowell HN, Walker LC (1999) Tissue specificity of a new splice form of the human lysyl hydroxylase 2 gene. Matrix Biol 18:179–187

    CAS  PubMed  Google Scholar 

  26. Yeowell HN, Walker LC (2000) Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol Genet Metab 71:212–224

    CAS  PubMed  Google Scholar 

  27. Pornprasertsuk S, Duarte WR, Mochida Y et al (2005) Overexpression of lysyl hydroxylase-2b leads to defective collagen fibrillogenesis and matrix mineralization. J Bone Miner Res 20:81–87

    CAS  PubMed  Google Scholar 

  28. Bank RA, Bayliss MT, Lafeber FP et al (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330:345–351

    CAS  PubMed  Google Scholar 

  29. Eyre DR, Dickson IR, Ness KV (1988) Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J 252:495–500

    CAS  PubMed  Google Scholar 

  30. Saito M, Soshi S, Fujii K (2003) Effect of hyper- and microgravity on collagen post-translational controls of MC3T3–E1 osteoblasts. J Bone Miner Res 18:1695–1705

    CAS  PubMed  Google Scholar 

  31. Paschalis EP, Verdelis K, Doty SB, Boskey AL et al (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    CAS  PubMed  Google Scholar 

  32. Eyre DR, Paz A, Gallop PM (1984) Cross-linking in collagen and elastin. Ann Rev Biochem 53:717–748

    CAS  PubMed  Google Scholar 

  33. Kuboki Y, Kudo A, Mizuno M et al (1992) Time-dependent changes of collagen cross-links and their precursors in the culture of osteogenic cells. Calcif Tissue Int 50:473–480

    CAS  PubMed  Google Scholar 

  34. Atsawasuwan P, Mochida Y, Parisuthiman D et al (2005) Expression of lysyl oxidase isoforms in MC3T3–E1 osteoblastic cells. Biochem Biophys Res Commun 327:1042–1046

    CAS  PubMed  Google Scholar 

  35. Nagaoka H, Mochida Y, Atsawasuwan P et al (2008) 1,25(OH)2D3 regulates collagen quality in an osteoblastic cell culture system. Biochem Biophys Res Commun 377:674–678

    CAS  PubMed  Google Scholar 

  36. Bird TA, Levene CI (1982) Lysyl oxidase: evidence that pyridoxal phosphate is a co-factor. Biochem Biophys Res Commun 108:1172–1180

    CAS  PubMed  Google Scholar 

  37. Wang SX, Mure M, Medzihradszky KF et al (1996) A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Science 273:1078–1084

    CAS  PubMed  Google Scholar 

  38. Fujii K, Kajiwara T, Kurosu H (1979) Effect of vitamin B6 deficiency on the crosslink formation of collagen. FEBS Lett 97:193–195

    CAS  PubMed  Google Scholar 

  39. Feres-Filho EJ, Choi YJ, Han X et al (1995) Pre- and post-translational regulation of lysyl oxidase by transforming growth factor-beta 1 in osteoblastic MC3T3–E1 cells. J Biol Chem 270:30797–30803

    CAS  PubMed  Google Scholar 

  40. Hong HH, Uzel MI, Duan C et al (1999) Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Lab Invest 79:1655–1667

    CAS  PubMed  Google Scholar 

  41. Reiser K, Summers P, Medrano JF et al (1996) Effects of elevated circulating IGF-1 on the extracellular matrix in high-growth C57BL/6J mice. Am J Physiol 271:R696–R703

    CAS  PubMed  Google Scholar 

  42. Ozasa H, Tominaga T, Nishimura T et al (1981) Lysyl oxidase activity in the mouse uterine cervix is physiologically regulated by estrogen. Endocrinology 109:618–621

    CAS  PubMed  Google Scholar 

  43. Sanada H, Shikata J, Hamamoto H (1978) Changes in collagen cross-linking and lysyl oxidase by estrogen. Biochim Biophys Acta 541:408–413

    CAS  PubMed  Google Scholar 

  44. Raposo B, Rodriguez C, Martinez-Gonzalez J et al (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and down regulate LOX expression in vascular endothelial cells. Atherosclerosis 177:1–8

    CAS  PubMed  Google Scholar 

  45. Liu G, Nellaiappan K, Kagan HM (1997) Irreversible inhibition of lysyl oxidase by homocysteine thiolactone and its selenium and oxygen analogues. Implications for homocystinuria. J Biol Chem 272:32370–32377

    CAS  PubMed  Google Scholar 

  46. Kang HA, Trelstad RL (1973) A collagen defect in homocystinuria. J Clin Invest 52:2571–2578

    CAS  PubMed  Google Scholar 

  47. Feres-Filho EJ, Menassa GB, Trackman PC (1996) Regulation of lysyl oxidase by basic fibroblast growth factor in osteoblastic MC3T3–E1 cells. J Biol Chem 271:6411–6416

    CAS  PubMed  Google Scholar 

  48. Saito M, Fujii K, Tanaka T, Soshi S (2004) Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3–E1 osteoblasts. Calcif Tissue Int 75:384–395

    CAS  PubMed  Google Scholar 

  49. Rodriguez C, Alcudia JF, Martinez-Gonzalez J et al (2008) Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196:558–564

    CAS  PubMed  Google Scholar 

  50. Turecek C, Fratzl-Zelman N, Rumpler M (2008) Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 82:392–400

    CAS  PubMed  Google Scholar 

  51. Fujii K, Kuboki Y, Sasaki S (1976) Aging of human bone and cartilage collagen: changes in the reducible cross-links and their precursors. Gerontology 22:363–370

    CAS  PubMed  Google Scholar 

  52. Bailey AJ, Shimokomaki MS (1971) Age related changes in the reducible cross-links of collagen. FEBS Lett 16:86–88

    CAS  PubMed  Google Scholar 

  53. Robins SP, Shimokomaki M, Bailey AJ (1973) Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J 131:771–780

    CAS  PubMed  Google Scholar 

  54. Ogawa T, Ono T, Tsuda M (1982) A novel fluor in insoluble collagen: a crosslinking moiety in collagen molecule. Biochem Biophys Res Commun 107:1252–1257

    CAS  PubMed  Google Scholar 

  55. Eyre DR, Oguchi H (1980) The hydroxypyridinium crosslinks of skeletal collagens: their measurement, properties and a proposed pathway of formation. Biochem Biophys Res Commun 92:403–410

    CAS  PubMed  Google Scholar 

  56. Robins SP, Duncan A (1983) Cross-linking of collagen. Location of pyridinoline in bovine articular cartilage at two sites of the molecule. Biochem J 215:175–182

    CAS  PubMed  Google Scholar 

  57. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628

    CAS  PubMed  Google Scholar 

  58. Brady JD, Robins SP (2001) Structural characterization of pyrrolic cross-links in collagen using a biotinylated Ehrlich’s reagent. J Biol Chem 276:18812–18818

    CAS  PubMed  Google Scholar 

  59. Kuypers R, Tyler M, Kurth LB et al (1992) Identification of the loci of the collagen-associated Ehrlich chromogen in type I collagen confirms its role as a trivalent cross-link. Biochem J 283:129–136

    CAS  PubMed  Google Scholar 

  60. Hanson DA, Eyre DR (1996) Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem 271:26508–26516

    CAS  PubMed  Google Scholar 

  61. Banse X, Devogelaer JP, Lafosse A et al (1998) Cross-link profile of bone collagen correlates with structural organization of trabeculae. Bone 31:70–76

    Google Scholar 

  62. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    CAS  PubMed  Google Scholar 

  63. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep 5:62–66

    PubMed  Google Scholar 

  64. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of aging and diabetes. Int J Biochem Cell Biol 28:1297–1310

    CAS  PubMed  Google Scholar 

  65. Hein G, Weiss C, Lehmann G et al (2005) Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis 65:101–104

    Google Scholar 

  66. Hernandez CJ, Tang SY, Baumbach BM et al (2005) Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37:825–832

    CAS  PubMed  Google Scholar 

  67. Viguet-Carrin S, Farlay D, Bala Y et al (2008) An in vitro model to test the contribution of advanced glycation end products to bone biomechanical properties. Bone 42:139–149

    CAS  PubMed  Google Scholar 

  68. Wang X, Shen X, Li X et al (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    PubMed  Google Scholar 

  69. Nakamura K, Nakazawa Y, Ienaga K (1997) Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Biochem Biophys Res Commun 232:227–230

    CAS  PubMed  Google Scholar 

  70. Sims TJ, Rasmussen LM, Oxlund H et al (1996) The role of glycation cross-links in diabetic vascular stiffening. Diabetologia 39:946–951

    CAS  PubMed  Google Scholar 

  71. Takahashi M, Hoshino H, Kushida K et al (1995) Direct measurement of crosslinks, pyridinoline, deoxypyridinoline, and pentosidine, in the hydrolysate of tissues using high-performance liquid chromatography. Anal Biochem 232:158–162

    CAS  PubMed  Google Scholar 

  72. Viguet-Carrin S, Gineyts E, Bertholon C (2009) Simple and sensitive method for quantification of fluorescent enzymatic mature and senescent crosslinks of collagen in bone hydrolysate using single-column high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 877:1–7

    CAS  PubMed  Google Scholar 

  73. Bank RA, Beekman B, Verzijl N et al (1997) Sensitive fluorimetric quantitation of pyridinium and pentosidine crosslinks in biological samples in a single high-performance liquid chromatographic run. J Chromatogr B Biomed Sci Appl 703:37–44

    CAS  PubMed  Google Scholar 

  74. Saito M, Fujii K, Mori Y et al (2006) Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17:1514–1523

    CAS  PubMed  Google Scholar 

  75. Garnero P, Borel O, Gineyts E et al (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    CAS  PubMed  Google Scholar 

  76. Saito M, Mori S, Mashiba T et al (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354

    CAS  PubMed  Google Scholar 

  77. Silva MJ, Brodt MD, Lynch MA et al (2009) Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth and diminished whole-bone strength and fatigue life. J Bone Miner Res 94:1618–1627

    Google Scholar 

  78. Viguet-Carrin S, Roux JP, Arlot ME et al (2006) Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39:1073–1079

    CAS  PubMed  Google Scholar 

  79. Vashishth D, Gibson GJ, Khoury JI et al (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201

    CAS  PubMed  Google Scholar 

  80. Biemel KM, Reihl O, Conrad J et al (2001) Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor. J Biol Chem 276:23405–23412

    CAS  PubMed  Google Scholar 

  81. Sell DR, Biemel KM, Reihl O et al (2005) Glucosepane is a major protein cross-link of the senescent human extracellular matrix. Relationship with diabetes. J Biol Chem 280:12310–12315

    CAS  PubMed  Google Scholar 

  82. Robins SP, Bailey AJ (1972) Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun 48:76–84

    CAS  PubMed  Google Scholar 

  83. Monnier VM, Sell DR, Dai Z et al (2008) The role of the amadori product in the complications of diabetes. Ann NY Acad Sci 1126:81–88

    CAS  PubMed  Google Scholar 

  84. Brennan M (1989) Changes in solubility, non-enzymatic glycation, and fluorescence of collagen in tail tendons from diabetic rats. J Biol Chem 264:20947–20952

    CAS  PubMed  Google Scholar 

  85. Saito M (1999) Age-related changes in biochemical characteristics of collagen from human weight-bearing and non-weight-bearing bone. Tokyo Jikeikai Ika Daigaku Zasshi 114:327–337 (in Japanese), http://sciencelinks.jp/j-east/article/200010/000020001000A0286989.php

    CAS  Google Scholar 

  86. Ogawa N, Yamaguchi T, Yano T et al (2007) The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3–E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res 39:871–875

    CAS  PubMed  Google Scholar 

  87. Mercer N, Ahmed H, Etcheverry SB et al (2007) Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells. Mol Cell Biochem 306:87–94

    CAS  PubMed  Google Scholar 

  88. Cortizo AM, Lettieri MG, Barrio DA et al (2003) Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK). Mol Cell Biochem 250:1–10

    CAS  PubMed  Google Scholar 

  89. Sanguineti R, Storace D, Monacelli F et al (2008) Pentosidine effects on human osteoblasts in vitro. Ann NY Acad Sci 1126:166–172

    CAS  PubMed  Google Scholar 

  90. Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270

    CAS  PubMed  Google Scholar 

  91. Ding KH, Wang ZZ, Hamrick MW et al (2006) Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun 340:1091–1097

    CAS  PubMed  Google Scholar 

  92. Valcourt U, Merle B, Gineyts E et al (2007) Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem 282:5691–5703

    CAS  PubMed  Google Scholar 

  93. Urena P, De Vernejoul MC (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156

    CAS  PubMed  Google Scholar 

  94. Allen MR, Gineyts E, Leeming DJ et al (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19:329–337

    CAS  PubMed  Google Scholar 

  95. Tang SY, Allen MR, Phipps R et al (2008) Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int 94:887–894

    Google Scholar 

  96. Odetti P, Rossi S, Monacelli F et al (2005) Advanced glycation end products and bone loss during aging. Ann NY Acad Sci 1043:710–717

    CAS  PubMed  Google Scholar 

  97. McCarthy AD, Etcheverry SB, Bruzzone L et al (2001) Non-enzymatic glycation of a type I collagen matrix: effect on osteoblastic development and oxidative stress. BMC Cell Biol 2:16

    CAS  PubMed  Google Scholar 

  98. Saito M, Marumo K, Soshi S et al (2009) Raloxifene ameliorates detrimental enzymatic and non-enzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int. doi:10.1007/s00198-009-0980-4

  99. Saito M, Fujii K, Soshi S et al (2006) Reductions in degree of mineralization and enzymatic collagen cross-links and increases in glycation induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17:986–995

    CAS  PubMed  Google Scholar 

  100. Miyata T, van Ypersele de Strihou C et al (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399

    CAS  PubMed  Google Scholar 

  101. LaCroix AZ, Lee JS, Wu L et al (2008) Cystatin-C, renal function, and incidence of hip fracture in postmenopausal women. J Am Geriatr Soc 56:1434–1441

    PubMed  Google Scholar 

  102. Knott L, Tarlton JF, Bailey AJ (1997) Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon. Biochem J 322:535–542

    CAS  PubMed  Google Scholar 

  103. Paschalis EP, Recker R, Dicarlo E et al (2003) Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 18:1942–1946

    CAS  PubMed  Google Scholar 

  104. Paschalis EP, Shane E, Lyritis G et al (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    PubMed  Google Scholar 

  105. Mashiba T, Mori S, Burr DB et al (2005) The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab 23(Suppl):36–42

    CAS  PubMed  Google Scholar 

  106. Nyman JS, Roy A, Acuna RL et al (2006) Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone 39:1210–1217

    CAS  PubMed  Google Scholar 

  107. Gourion-Arsiquaud S, Burket J, Havill L et al (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281

    PubMed  Google Scholar 

  108. Eyre DR (1981) Cross-link maturation in bone collagen. Dev Biochem 22:51–54

    CAS  Google Scholar 

  109. Wojtowicz A, Dziedzic-Goclawska A, Kaminski A et al (1997) Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1. Bone 20:127–132

    CAS  PubMed  Google Scholar 

  110. Durchschlag E, Paschalis EP, Zoehrer R et al (2006) Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res 21:1581–1590

    CAS  PubMed  Google Scholar 

  111. Otsubo K, Katz EP, Mechanic GL (1992) Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde. Biochemistry 31:396–402

    CAS  PubMed  Google Scholar 

  112. Oxlund H, Barckman M, Ortoft G et al (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    CAS  PubMed  Google Scholar 

  113. Knott L, Whitehead CC, Fleming RH et al (1995) Biochemical changes in the collagenous matrix of osteoporotic avian bone. Biochem J 310:1045–1051

    CAS  PubMed  Google Scholar 

  114. Opsahl W, Zeronian H, Ellison M et al (1982) Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr 112:708–716

    CAS  PubMed  Google Scholar 

  115. Knott L, Bailey AJ (1999) Collagen biochemistry of avian bone: comparison of bone type and skeletal site. Br Poult Sci 40:371–379

    CAS  PubMed  Google Scholar 

  116. Bailey AJ, Sims TJ, Ebbesen EN (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    CAS  PubMed  Google Scholar 

  117. Shimazaki M, Nakamura K, Kii I et al (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303

    CAS  PubMed  Google Scholar 

  118. Mochida Y, Parisuthiman D, Pornprasertsuk-Damrongsri S et al (2009) Decorin modulates collagen matrix assembly and mineralization. Matrix Biol 28:44–52

    CAS  PubMed  Google Scholar 

  119. Parisuthiman D, Mochida Y, Duarte WR et al (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886

    CAS  PubMed  Google Scholar 

  120. Wallace JM, Golcuk K, Morris MD et al (2009) Inbred strain-specific response to biglycan deficiency in the cortical bone of C57BL6/129 and C3H/He mice. J Bone Miner Res 24:1002–1012

    PubMed  Google Scholar 

  121. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151

    CAS  PubMed  Google Scholar 

  122. Nyman JS, Roy A, Tyler JH et al (2007) Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthop Res 25:646–655

    PubMed  Google Scholar 

  123. Wang X, Qian C (2006) Prediction of microdamage formation using a mineral-collagen composite model of bone. J Biomech 39:595–602

    PubMed  Google Scholar 

  124. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible crosslinks in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    CAS  PubMed  Google Scholar 

  125. Bailey AJ, Wotton SF, Sims TJ et al (1993) Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res 29:119–132

    CAS  PubMed  Google Scholar 

  126. Robins SP (1982) Analysis of the crosslinking components in collagen and elastin. Methods Biochem Anal 28:329–379

    CAS  PubMed  Google Scholar 

  127. Avery NC, Sims TJ, Bailey AJ (2009) Quantitative determination of collagen cross-links. Methods Mol Biol 522:103–121

    CAS  PubMed  Google Scholar 

  128. Biemel KM, Friedl DA, Lederer MO (2002) Identification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound. J Biol Chem 277:24907–24915

    CAS  PubMed  Google Scholar 

  129. Boskey AL, DiCarlo E, Paschalis E et al (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    CAS  PubMed  Google Scholar 

  130. Hara K, Kobayashi M, Akiyama Y (2007) Influence of bone osteocalcin levels on bone loss induced by ovariectomy in rats. J Bone Miner Metab 25:345–353

    CAS  PubMed  Google Scholar 

  131. Boivin GY, Chavassieuv SAC et al (2000) Alendronate increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694

    CAS  PubMed  Google Scholar 

  132. Grynpas MD, Hunter GK (1988) Bone mineral and glycosaminoglycans in newborn and mature rabbits. J Bone Miner Res 3:159–164

    Article  CAS  PubMed  Google Scholar 

  133. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116

    CAS  PubMed  Google Scholar 

  134. Dequeker J, Merlevede W (1971) Collagen content and collagen extractability pattern of adult human trabecular bone according to age, sex and amount of bone mass. Biochim Biophys Acta 244:410–420

    CAS  PubMed  Google Scholar 

  135. Danielsen CC (1990) Age-related thermal stability and susceptibility to proteolysis of rat bone collagen. Biochem J 272:697–701

    CAS  PubMed  Google Scholar 

  136. van der Harst MR, DeGroot J, Kiers GH et al (2005) Biochemical analysis of the articular cartilage and subchondral and trabecular bone of the metacarpophalangeal joint of horses with early osteoarthritis. Am J Vet Res 66:1238–1246

    PubMed  Google Scholar 

  137. Arnaud SB, Buckendahl P, Durnova G et al (2000) Bone biochemistry in rat femoral diaphysis after space flight. J Gravit Physiol 7:7–15

    CAS  PubMed  Google Scholar 

  138. Silva MJ, Brodt MD, Wopenka B et al (2006) Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res 21:78–88

    PubMed  Google Scholar 

  139. Saito M, Marumo K, Ushiku C, et al (2009) Weekly treatment with human parathyroid hormone (1-34) for 18 months increases bone strength via the amelioration of microarchitecture, degree of mineralization, enzymatic and non-enzymatic cross-link formation in ovariectomized cynomolgus monkeys. J Bone Miner Res Suppl FR0044

  140. Bailey AJ, Knott L (1999) Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol 34:337–351

    CAS  PubMed  Google Scholar 

  141. Gourion-Arsiquaud S, Faibish D, Myers E et al (2009) Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res 24:1565–1571

    PubMed  Google Scholar 

  142. McLean RR, Hannan MT (2007) B vitamins, homocysteine, and bone disease: epidemiology and pathophysiology. Curr Osteoporos Rep 5:112–119

    PubMed  Google Scholar 

  143. McKusick VA (1966) Heritable disorders of connective tissue, vol 3rd. C.V. Mosby, St Louis, p 155

    Google Scholar 

  144. Lubec B, Fang-Kircher S, Lubec T et al (1996) Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 13:159–162

    Google Scholar 

  145. Eberhardt RT, Forgione MA, Cap A et al (2000) Endothelial dysfunction in a murine model of mild hyper homocyst(e)inemia. J Clin Invest 106:483–491

    CAS  PubMed  Google Scholar 

  146. Herrmann M, Tami A, Wildemann B et al (2008) Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone 44:467–475

    PubMed  Google Scholar 

  147. Brennan TC, Rizzoli R, Ammann P (2009) Selective modification of bone quality by PTH, pamidronate, or raloxifene. J Bone Miner Res 24:800–808

    CAS  PubMed  Google Scholar 

  148. Hein G, Wiegand R, Lehmann G et al (2003) Advanced glycation end-products pentosidine and Nε-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology 42:1242–1246

    CAS  PubMed  Google Scholar 

  149. Koyama Y, Takeishi Y, Arimoto T et al (2007) High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. J Card Fail 13:199–206

    CAS  PubMed  Google Scholar 

  150. Kageyama Y, Takahashi M, Ichikawa T et al (2008) Reduction of oxidative stress marker levels by anti-TNF-alpha antibody, infliximab, in patients with rheumatoid arthritis. Clin Exp Rheumatol 26:73–80

    CAS  PubMed  Google Scholar 

  151. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46:1550–1555

    CAS  PubMed  Google Scholar 

  152. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int 18:427–444

    CAS  PubMed  Google Scholar 

  153. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    CAS  PubMed  Google Scholar 

  154. Tomasek JJ, Meyers SW, Basinger JB et al (1994) Diabetic and age-related enhancement of collagen-linked fluorescence in cortical bones of rats. Life Sci 55:855–861

    CAS  PubMed  Google Scholar 

  155. Sugiyama S, Miyata T, Ueda Y et al (1998) Plasma levels of pentosidine in diabetic patients: an advanced glycation end product. J Am Soc Nephrol 9:1681–1688

    CAS  PubMed  Google Scholar 

  156. Takahashi M, Ohishi T, Aoshima H et al (1993) The Maillard protein cross-link pentosidine in urine from diabetic patients. Diabetologia 36:664–667

    CAS  PubMed  Google Scholar 

  157. Culbertson SM, Vassilenko EI, Morrison LD et al (2003) Paradoxical impact of antioxidants on post-Amadori glycoxidation: counterintuitive increase in the yields of pentosidine and nepsilon-carboxymethyllysine using a novel multifunctional pyridoxamine derivative. J Biol Chem 278:38384–38394

    CAS  PubMed  Google Scholar 

  158. Saito M, Fujii K, Soshi S et al (2005) Effects of vitamin B6 and vitamin K2 on bone mechanical properties and collagen cross-links in spontaneously diabetic WBN/Kob rats. J Bone Miner Res Suppl SU420

  159. Khatami M, Suldan Z, David I et al (1988) Inhibitory effects of pyridoxal phosphate, ascorbate and aminoguanidine on nonenzymatic glycosylation. Life Sci 43:1725–1731

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Marumo, K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21, 195–214 (2010). https://doi.org/10.1007/s00198-009-1066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1066-z

Keywords

Navigation