Skip to main content

Advertisement

Log in

Collagen type III alpha 1 polymorphism (rs1800255, COL3A1 2209 G>A) assessed with high-resolution melting analysis is not associated with pelvic organ prolapse in the Dutch population

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The rs1800255, COL3A1 2209 G>A polymorphism in the alpha 1 chain of collagen type III has been associated with an increased risk of pelvic organ prolapse (POP). In one of our previous studies however, polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) misdiagnosed rs1800255, COL3A1 2209 G>A in 6 % of cases. The high-resolution melting (HRM) analysis on the contrary obtained a 100 % accordance for this specific polymorphism and was used in the present study to validate this risk factor for POP.

Methods

In this case–control study, women with and without symptoms of POP were included and compared. DNA was extracted from blood samples. HRM analysis was used to assess for the presence of the homozygous rs1800255. Groups were compared using the Pearson chi-square, Mann–Whitney, and t tests. The discrepancy between HRM and PCR-RFLP results was investigated using PCR-RFLP results available from our previous study.

Results

The study included 354 women: 272 patients with POP and 82 controls; 18 (7 %) cases versus 3 (4 %) controls had a homozygous rs1800255, COL3A1 2209 G>A polymorphism (odds ratio 1.9, 95 % confidence interval 0.5–6.9, compared to the wild type), and thus no association between POP and the homozygous polymorphism could be demonstrated. A discrepancy between HRM and PCR-RFLP results was found in 8 % of the samples.

Conclusions

The previously found statistically significant association between the rs1800255, COL3A1 2209 G>A polymorphism as measured with PCR-RFLP and POP could no longer be demonstrated. This raises concerns regarding the results of other association studies using PCR-RFLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Buchsbaum GM, Duecy EE, Kerr LA et al (2006) Pelvic organ prolapse in nulliparous women and their parous sisters. Obstet Gynecol 108(6):1388–1393

    PubMed  Google Scholar 

  2. Buchsbaum GM, Duecy EE (2008) Incontinence and pelvic organ prolapse in parous/nulliparous pairs of identical twins. Neurourol Urodyn 27(6):496–498

    PubMed  Google Scholar 

  3. Altman D, Forsman M, Falconer C et al (2008) Genetic influence on stress urinary incontinence and pelvic organ prolapse. Eur Urol 54(4):918–922

    PubMed  Google Scholar 

  4. Nikolova G, Lee H, Berkovitz S et al (2007) Sequence variant in the laminin gamma1 (LAMC1) gene associated with familial pelvic organ prolapse. Hum Genet 120(6):847–856

    CAS  PubMed  Google Scholar 

  5. Kluivers KB, Dijkstra JR, Hendriks JC et al (2009) COL3A1 2209 G>A is a predictor of pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct 20(9):1113–1118

    PubMed  Google Scholar 

  6. Chen HY, Chung YW, Lin WY et al (2008) Collagen type 3 alpha 1 polymorphism and risk of pelvic organ prolapse. Int J Gynaecol Obstet 103(1):55–58

    CAS  PubMed  Google Scholar 

  7. Jeon MJ, Chung SM, Choi JR et al (2009) The relationship between COL3A1 exon 31 polymorphism and pelvic organ prolapse. J Urol 181(3):1213–1216

    PubMed  Google Scholar 

  8. Martins KD, de Jármy-DiBella ZI, da Fonseca AM et al (2011) Evaluation of demographic, clinical characteristics, and genetic polymorphism as risk factors for pelvic organ prolapse in Brazilian women. Neurourol Urodyn 30(7):1325–1328

    Google Scholar 

  9. Chen HY, Lin WY, Chen YH et al (2010) Matrix metalloproteinase-9 polymorphism and risk of pelvic organ prolapse in Taiwanese women. Eur J Obstet Gynecol Reprod Biol 149(2):222–224

    CAS  PubMed  Google Scholar 

  10. Chen C, Hill LD, Schubert CM et al (2010) Is laminin gamma-1 a candidate gene for advanced pelvic organ prolapse? Am J Obstet Gynecol 202(5):505.e1–505.e5

    Google Scholar 

  11. Chen HY, Chung YW, Lin WY et al (2008) Estrogen receptor alpha polymorphism is associated with pelvic organ prolapse risk. Int Urogynecol J Pelvic Floor Dysfunct 19(8):1159–1163

    PubMed  Google Scholar 

  12. Chen HY, Wan L, Chung YW et al (2008) Estrogen receptor beta gene haplotype is associated with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 138(1):105–109

    CAS  PubMed  Google Scholar 

  13. Chen HY, Chung YW, Lin WY et al (2009) Progesterone receptor polymorphism is associated with pelvic organ prolapse risk. Acta Obstet Gynecol Scand 88(7):835–838

    CAS  PubMed  Google Scholar 

  14. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85(1):50–58

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Pan M, Lin M, Yang L et al (2013) Glucose-6-phosphate dehydrogenase (G6PD) gene mutations detection by improved high-resolution DNA melting assay. Mol Biol Rep 40(4):3073–3082

    CAS  PubMed  Google Scholar 

  16. Thomas V, Mazard B, Garcia C et al (2013) UGT1A1 (TA)n genotyping in sickle-cell disease: high resolution melting (HRM) curve analysis or direct sequencing, what is the best way? Clin Chim Acta 424:258–260

    CAS  PubMed  Google Scholar 

  17. Ouragini H, Haddad F, Darragi I et al (2013) Rapid and inexpensive detection of common HBB gene mutations in Tunisian population by high-resolution melting analysis: implication for molecular diagnosis. Hematology 19(2):80–84

    PubMed  Google Scholar 

  18. Marotta RV, Turri O, Morandi A et al (2011) High resolution melting analysis to genotype the most common variants in the HFE gene. Clin Chem Lab Med 49(9):1453–1457

    CAS  PubMed  Google Scholar 

  19. Lince SL, Kluivers KB, Dijkstra JR et al (2009) Reliable identification of the type III collagen gene polymorphism rs1800255 with the use of high resolution melting analysis. Lab Med 40(10):604–606

    Google Scholar 

  20. Lince SL, van Kempen LC, Vierhout ME et al (2012) A systematic review of clinical studies on hereditary factors in pelvic organ prolapse. Int Urogynecol J 23(10):1327–1336

    Google Scholar 

  21. Peters DL, Barber RC, Flood EM et al (2003) Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor −308G–>A single nucleotide polymorphism and bacterial sepsis: implications for studies of complex traits. Crit Care Med 31(6):1691–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jancik S, Drabek J, Berkovcova J et al (2012) A comparison of direct sequencing, pyrosequencing, high resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas. J Exp Clin Cancer Res 31:79

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Carbonell P, Turpin MC, Torres-Moreno D et al (2011) Comparison of allelic discrimination by dHPLC, HRM, and TaqMan in the detection of BRAF mutation V600E. J Mol Diagn 13(5):467–473

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Allen-Brady K, Cannon-Albright L, Farnham JM et al (2011) Identification of six loci associated with pelvic organ prolapse using genome-wide association analysis. Obstet Gynecol 118(6):1345–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lammers K, Lince SL, Spath MA et al (2012) Pelvic organ prolapse and collagen-associated disorders. Int Urogynecol J 23(3):313–319

    PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina L. Lince.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lince, S.L., van Kempen, L.C., Dijkstra, J.R. et al. Collagen type III alpha 1 polymorphism (rs1800255, COL3A1 2209 G>A) assessed with high-resolution melting analysis is not associated with pelvic organ prolapse in the Dutch population. Int Urogynecol J 25, 1237–1242 (2014). https://doi.org/10.1007/s00192-014-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-014-2385-y

Keywords

Navigation