Skip to main content
Log in

Quantification of corrections for the main lunisolar nutation components and analysis of the free core nutation from VLBI-observed nutation residuals

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The attempt to quantify the corrections of lunisolar nutation components was made after analysis of six sets of Earth’s orientation parameters (EOP). The deviations of the long-term nutation components about IAU2006/IAU2000A precession–nutation model are consistent with the uncertainties suggested by Mathews et al. (J Geophys Res Solid Earth, 2002. https://doi.org/10.1029/2001JB000390), but they exceed the errors determined in this work. The corrections are validated using the IERS 14C04 and IVS 19q4e combined solutions. After applying the corrections found in this work to the 14C04 nutation residuals, we analyzed the remaining signals, which contain the signature of the free core nutation (FCN). The eigenperiod of the FCN is fixed to the value derived from the resonance of the non-hydrostatic earth model in a priori. The amplitude of FCN is computed by fitting observations to the empirical model using a sliding window, the length of window is determined by taking into account the interference between those close nutation components and the FCN. In addition, we also fitted the nutation residuals by a viscous damping function; both methods produce the same results in the amplitudes of FCN. The magnitude of the free core nutation bears a “V-shape” distribution, and furthermore, the oscillation of the FCN shows a decay and a steady reinforcement before and after 1999. In order to examine the origin of the modulation in FCN’s magnitude, we briefly analyzed the possible damping or beating mechanism behind it. We diagnosed the magnitude and running phase changes of FCN by comparing it with the occurrence of the transient geomagnetic jerks. The weighted root mean square errors of nutation residuals are minimally reduced about \(36\%\) when the corrections to the 21 nutation components and the FCN signature are considered together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility

The IERS 14C04 EOP solution are available from the IERS website (http://www.iers.or) and the IVS 19q4e is accessible through http://cddis.nasa.gov All processed data and Fis20 series and the nutation series developed in the past are accessible through http://gitlab-as.oma.be/zhuping/earths-nutation.

References

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131. https://doi.org/10.1002/2016JB013098

    Article  Google Scholar 

  • Behrend D, Böhm J, Charlot P, Clark T, Corey B, Gipson J, Haas R, Koyama Y, MacMillan D, Malkin Z et al (2009) Recent progress in the VLBI2010 development. In: Sideris MG (ed) Observing our changing earth. Springer, Berlin, pp 833–840. https://doi.org/10.1007/978-3-540-85426-5_96

    Chapter  Google Scholar 

  • Belda S, Ferrandiz JM, Heinkelmann R, Nilsson T, Schuh H (2016) Testing a new free core nutation empirical model. J Geodyn 94:59–67. https://doi.org/10.1016/j.jog.2016.02.002

    Article  Google Scholar 

  • Belda S, Heinkelmann R, Ferrándiz JM, Karbon M, Nilsson T, Schuh H (2017) An improved empirical harmonic model of the celestial intermediate pole offsets from a global VLBI solution. Astron J 154(4):166

    Article  Google Scholar 

  • Bizouard C, Lambert S, Becker O, Richard JY (2018) The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J Geod 2018:1–13

    Google Scholar 

  • Bretagnon P, Francou G, Rocher P, Simon J (1998) Smart97: a new solution for the rotation of the rigid Earth. Astron Astrophys 329:329–338

    Google Scholar 

  • Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412(2):567–586. https://doi.org/10.1051/0004-6361:20031539

    Article  Google Scholar 

  • Chao BF, Yikai H (2015) The Earth’s free core nutation: formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth Planet Sci Lett 432:483–492

    Article  Google Scholar 

  • Charlot P, Jacobs CS, Gordon D, Lambert Sébastien, de Witt A, Böhm J, Fey AL, Heinkelmann R, Skurikhina E, Titov O et al (2020) The third realization of the International Celestial Reference Frame by very long baseline interferometry. A&A 644:A159

    Article  Google Scholar 

  • Dehant V, Mathews PM (2015) Precession, nutation and wobble of the earth. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dehant V, Feissel-Vernier M, de Viron O, Ma C, Yseboodt M, Bizouard C (2003) Remaining error sources in the nutation at the submilliarc second level. J Geophys Res Solid Earth. https://doi.org/10.1029/2002JB001763

    Article  Google Scholar 

  • Dehant V, Laguerre R, Rekier J, Rivoldini A, Triana SA, Trinh A, Van Hoolst T, Zhu P (2017) Understanding the effects of the core on the nutation of the Earth. Geod Geodyn. https://doi.org/10.1016/j.geog.2017.04.005

    Article  Google Scholar 

  • Ericsson T, Ruhe A (1980) The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems. Math Comput 35(152):1251–1268

    Google Scholar 

  • Gattano C, Lambert SB, Bizouard C (2017) Observation of the earth’s nutation by the VLBI: how accurate is the geophysical signal. J Geod 91(7):849–856. https://doi.org/10.1007/s00190-016-0940-7

    Article  Google Scholar 

  • Hartmann T, Soffel M, Ron C (1999) The geophysical approach towards the nutation of a rigid Earth. Astron Astrophys Suppl Ser 134(2):271–286

    Article  Google Scholar 

  • Herring T, Gwinn C, Shapiro I (1986) Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 1. Data analysis. J Geophys Res Solid Earth 91(B5):4745–4754

    Article  Google Scholar 

  • Herring T, Buffett B, Mathews P, Shapiro I (1991) Forced nutations of the earth: Influence of inner core dynamics: 3. Very long interferometry data analysis. J Geophys Res Solid Earth 96(B5):8259–8273

    Article  Google Scholar 

  • Herring T, Mathews P, Buffett B (2002) Modeling of nutation–precession: very long baseline interferometry results. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000165

    Article  Google Scholar 

  • Hinderer J, Boy JP, Gegout P, Defraigne P, Roosbeek F, Dehant Véronique (2000) Are the free core nutation parameters variable in time? Phys Earth Planet Interiors 117:37–49

    Article  Google Scholar 

  • Kinoshita H (1977) Theory of the rotation of the rigid Earth. Celest Mech 15(3):277–326

    Article  Google Scholar 

  • Koot L, Rivoldini A, de Viron O, Dehant V (2008) Estimation of Earth interior parameters from a bayesian inversion of very long baseline interferometry nutation time series. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005409

    Article  Google Scholar 

  • Krásná H, Böhm J, Schuh H (2013) Free core nutation observed by VLBI. Astron Astrophys 555:A29. https://doi.org/10.1051/0004-6361/201321585.371-374

    Article  Google Scholar 

  • Lambert S (2006) Atmospheric excitation of the Earth’s free core nutation. Astron Astrophys 457(2):717–720. https://doi.org/10.1051/0004-6361:20065813

    Article  Google Scholar 

  • Malkin Z (2013) Free core nutation and geomagnetic jerks. J Geodyn 72:53–58. https://doi.org/10.1016/j.jog.2013.06.001

    Article  Google Scholar 

  • Mandea M, Holme R, Pais A, Pinheiro K, Jackson A, Verbanac G (2010) Geomagnetic jerks: rapid core fild variations and core dynamics. Space Sci Rev 155:147–175. https://doi.org/10.1007/s11214-010-9663-x

    Article  Google Scholar 

  • Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the Earth’s interior. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000390

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions, Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am Main 2010, pp 56–58

  • Petrov L (2007) The empirical Earth rotation model from VLBI observations. A&A 467:359–369

    Article  Google Scholar 

  • Rekier J, Triana SA, Trinh A, Dehant V (2020) Inertial modes of a freely rotating ellipsoidal planet and their relation to nutations. (Accepted to appear in PSJ)

  • Roosbeek F, Dehant V (1998) RDAN97: an analytical development of rigid Earth nutation series using the torque approach. Celest Mech Dyn Astron 70(4):215–253

    Article  Google Scholar 

  • Roosbeek F, Defraigne P, Feissel M, Dehant V (1999) The free core nutation period stays between 431 and 434 sidereal days. Geophys Res Lett 26:131–134

    Article  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Book  Google Scholar 

  • Seidelmann P (1982) 1980 IAU theory of nutation: the final report of the IAU working group on nutation. Celest Mech 27(1):79–106

    Article  Google Scholar 

  • Shirai T, Fukushima T, Malkin Z (2005) Detection of phase disturbances of free core nutation of the Earth and their concurrence with geomagnetic jerks. Earth Planets Space 57:151–155

    Article  Google Scholar 

  • Soffel M, Klioner SA, Petit G, Wolf P, Kopeikin SM, Bretagnon P, Brumberg VA, Capitaine N, Damour T, Fukushima T et al (2003) The IAU2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron J 126(6):2687–2706

    Article  Google Scholar 

  • Souchay J, Loysel B, Kinoshita H, Folgueira M (1999) Corrections and new developments in rigid earth nutation theory—III. Final tables. Astron Astrophys Suppl Ser 135(1):111–131

    Article  Google Scholar 

  • Triana SA, Rekier J, Trinh A, Dehant V (2019) The coupling between inertial and rotational eigenmodes in planets with liquid cores. Geophys J Int 218(2):1071–1086. https://doi.org/10.1093/gji/ggz212

    Article  Google Scholar 

  • Van Hoolst T (2005) Resonances between two stellar oscillation modes with nearly equal frequencies. A&A 295:371–392

    Google Scholar 

  • Vondrak J, Weber R, Ron C (2005) Free core nutation: direct observations and resonance effects. A&A 444(1):297–303

    Article  Google Scholar 

  • Wahr J (1981) The forced nutations of an elliptical, rotating, elastic and oceanless earth. Geophys J Int 64(3):705–727

    Article  Google Scholar 

  • Zhu S, Groten E, Reigber C (1990) Various aspects of numerical determination of nutation constants. II—an improved nutation series for the deformable earth. Astron J 99:1024–1044

    Article  Google Scholar 

  • Zhu P, Rivoldini A, Koot L, Dehant V (2017) Basic earth’s parameters as estimated from VLBI observations. Geod Geodyn 8(6):427–432. https://doi.org/10.1016/j.geog.2017.04.007

    Article  Google Scholar 

  • Zhu P, Triana AS, Rekier J, Trinth A, Dehant V, Rotanut team (2020) EarTh’s NutAtion computation packages (ETNA). https://doi.org/10.24414/mrh3-fc03

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. This study was supported by the ERC Grant ROTANUT (670874) and GRACEFUL (855677).

Author information

Authors and Affiliations

Authors

Contributions

PZ has developed the Earth NuTAtion code and written the overall manuscript. SAT, JR and AT have contributed to the verification of the code, the description and the discussion part of FCN. VD has joined the analysis and polished the complete manuscript.

Corresponding author

Correspondence to Ping Zhu.

A Appendix

A Appendix

The 11 sets of EOP solutions are used to estimate the uncertainties of the 21 nutation component are showed in Fig. 9.

We computed the power spectral density with the complex number (\(\mathrm{d}X+i\mathrm{d}Y\)) built from the IERS and IVS corrected residuals (Fig. 10), which partly explains the diversity of the eigen-period of the FCN found by different studies. One possible interpretation about the wider \(\delta T\) is that the eigen-period and phase of FCN may be changed due to the rotation of the Earth as indicated by Krásná et al. (2013), which hints a splitting of the mode; however, this need be investigated further.

We tested different window lengths starting from 2 to 8 years (Fig. 11) and compared the results with 4 years time window (Fig. 12). The amplitude of the short-term oscillations were decreasing with the increasing of the length of the window. The time reference is the mid point of each window. We used a one day sliding step to track the time variation of the mode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Triana, S.A., Rekier, J. et al. Quantification of corrections for the main lunisolar nutation components and analysis of the free core nutation from VLBI-observed nutation residuals. J Geod 95, 57 (2021). https://doi.org/10.1007/s00190-021-01513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01513-9

Keywords

Navigation