Skip to main content
Log in

Robust M estimation for 3D correlated vector observations based on modified bifactor weight reduction model

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper develops a robust M estimation approach applied for three-dimensional (3D) correlated vector observations. A modified bifactor reduction model is constructed, where the weight shrinking factor of the 3D vector observation is determined by a new test statistic that coincides with the estimated direction of the outlier vector and thus is more sensitive to vector-type outliers than the standardized residual used for most conventional robust M methods. With the proposed bifactor reduction model, the outlying vector observation is down-weighted directly along a specific direction, rather than separately at the three components. The new equivalent weight matrix derived from the proposed bifactor model still keeps symmetry, based on which the parameter estimation procedure is developed. A real 3D control network of GNSS vector observations is processed by simulating outliers with different types, sizes and locations. The results show the effectiveness of the proposed approach by comparing with other four conventional robust M method (IGGIII, Danish, Huber and Hampel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

For numerical simulations, the error-free topocentric coordinates of the sites defined at the reference point SHAO are given in Table 2 of Yang et al. (2019b). Raw GNSS observation and the baseline observation data will be available on reasonable request to the authors.

References

  • Baarda W (1968) A testing procedure for use in geodetic networks. Neth. Geodetic Comm., Public. On Geodesy, New Series, 2(5): 1–60

  • Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16(2):147–185

    Article  Google Scholar 

  • Caspary W (1987) Concepts of network and deformation Analysis. Monograph 11, School of Geomatic Engineering, the University of New South Wales, Sydney

  • Caspary W, Borutta H (1987) Robust estimation in deformation models. Surv Rev 29(223):29–45

    Article  Google Scholar 

  • Duchnowski R (2010) Median-based estimates and their application in controlling reference mark stability. J Surv Eng 136(2):47–52

    Article  Google Scholar 

  • Duchnowski R (2013) Hodges-Lehmann estimates in deformation analyses. J Geodesy 87(10–12):873–884

    Article  Google Scholar 

  • Even-Tzur G (2001) Graph theory applications to GPS networks. GPS Solut 5:31–38

    Article  Google Scholar 

  • Even-Tzur G (2002) GPS vector configuration design for monitoring deformation networks. J Geodesy 76:455–461

    Article  Google Scholar 

  • Grafarend EW, Krumm F, Okeke F (1995) Curvilinear geodetic datum transformation. Zeitschrift für Vermessungswesen 120:334–350

    Google Scholar 

  • Guo JF, Ou JK, Wang HT (2007) Quasi-accurate detection of outliers for correlated observations. J Surv Eng 133(3):129–130

    Article  Google Scholar 

  • Guo J, Ou J, Wang H (2010) Robust estimation for correlated observations: two local sensitivity-based downweighting strategies. J Geodesy 84(4):243–250

    Article  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics, the approach based on influence functions. John Wiley, New York

    Google Scholar 

  • Hekimoglu S, Berber M (2003) Effectiveness of robust methods in heterogeneous linear models. J Geodesy 76(11–12):706–713

    Article  Google Scholar 

  • Hodges JLJ, Lehmann EL (1963) Estimates of location based on rank tests. Ann Math Stat 34:598–611

    Article  Google Scholar 

  • Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6(9):813–827

    Article  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101

    Article  Google Scholar 

  • Huber PJ (1981) Robust Statistics. Wiley, New York

    Book  Google Scholar 

  • Kargoll B, Omidalizarandi M, Loth I, Paffenholz JA, Alkhatib H (2018) An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations. J Geodesy 92(3):271–297

    Article  Google Scholar 

  • Khodabandeh A, Amiri-Simkooei AR (2011) Recursive algorithm for L1 norm estimation in linear models. J Surv Eng 137(1):1–8

    Article  Google Scholar 

  • Klein I, Matsuoka MT, Guzatto MP, de Souza SF, Veronez MR (2015) On evaluation of different methods for quality control of correlated observations. Surv Rev 47(340):28–35

    Article  Google Scholar 

  • Knight NL, Wang J (2009) A comparison of outlier detection procedures and robust estimation methods in GPS positioning. J Naviag 62:699–709

    Article  Google Scholar 

  • Knight NL, Wang J, Rizos C (2010) Generalised measures of reliability for multiple outliers. J Geodesy 84(10):625–635

    Article  Google Scholar 

  • Koch KR (1996) Robuste parameterschaetzung. Allgemeine Vermessungs-Nachrichten 103(11):1–18

    Google Scholar 

  • Koch KR (2013) Robust estimation by expectation maximization algorithm. J Geodesy 87(2):107–116

    Article  Google Scholar 

  • Koch KR (2015) Minimal detectable outliers as measures of reliability. J Geodesy 89(5):483–490

    Article  Google Scholar 

  • Koch KR, Yang Y (1998) Robust Kalman filter for rank deficient observation models. J Geodesy 72(7–8):436–441

    Article  Google Scholar 

  • Koch IÉ, Veronez MR, da Silva RM, Klein I, Matsuoka MT, Gonzaga L, Larocca APC (2017) Least trimmed squares estimator with redundancy constraint for outlier detection in GNSS networks. Expert Syst Appl 88:230–237

    Article  Google Scholar 

  • Kok JJ (1984) On data snooping and multiple outlier testing. NOAA Technical Report NOS NGS. 30, US Department of Commerce, MD, USA

  • Krarup T, Kubik K, Juhl J (1980) Götterdämmerung over least squares. In: Proceedings of 14th congress of the international society of photogrammetry, Hamburg, Germany, vol B3, pp 369–378

  • Kutterer H (1998) Quality aspects of a GPS reference network in Antarctica-a simulation study. J Geodesy 72(2):51–63

    Article  Google Scholar 

  • Lehmann R (2012) Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models. J Geodesy 86(12):1137–1146

    Article  Google Scholar 

  • Lehmann R (2013) On the formulation of the alternative hypothesis for geodetic outlier detection. J Geodesy 87(4):373–386

    Article  Google Scholar 

  • Leick A, Emmons MB (1994) Quality control with reliability for large GPS networks. J Surv Eng 120(1):25–41

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Nie Y, Yang L, Shen Y (2019) Specific direction-based outlier detection approach for GNSS vector networks. Sensors 19:1836

    Article  Google Scholar 

  • Nowel K (2015) Robust M-estimation in analysis of control network deformations: classical and new method. J Surv Eng 141(4):04015002

    Article  Google Scholar 

  • Nowel K, Kamiński W (2014) Robust estimation of deformation from observation differences for free control networks. J Geodesy 88(8):749–764

    Article  Google Scholar 

  • Pope AJ (1976) The statistics of residuals and the detection of outliers. NOAA Technical Report NOS 65 NGS 1, U.S. National Geodetic Survey, MD, USA

  • Rousseeuw P (1984) Least median of squares regression. J Am Stat Assoc 79(388):871–880

    Article  Google Scholar 

  • Rousseeuw PJ, Wagner J (1994) Robust regression with a distributed intercept using least median of squares. Comput Stat Data Anal 17:65–75

    Article  Google Scholar 

  • Rousseeuw P, Yohai V (1984) Robust regression by means of S-estimators. In: Franke J, Härdle W, Martin D (eds) Robust and nonlinear time series analysis. Lecture notes in statistics, vol 26. Springer, New York

    Google Scholar 

  • Saka MH (2016) Performance evaluation of outlier detection methods in GNSS vector networks using 1D and 3D component analysis. Measurement 82:145–150

    Article  Google Scholar 

  • Saleh J (2000) Robust estimation based on energy minimization principles. J Geodesy 74(3–4):291–305

    Article  Google Scholar 

  • Schaffrin B (1989) An alternative approach to robust collocation. Bull Géodésique 63(4):395–404

    Article  Google Scholar 

  • Snow KB (2002) Applications of parameter estimation and hypothesis testing to GPS network adjustments. Ohio State University, Division Geodetic Sci

    Google Scholar 

  • Snow KB, Scharin B (2013) Three-dimensional outlier detection for GPS networks and their densification via the BLIMPBE approach. GPS Solut 7:130–139

    Article  Google Scholar 

  • Stigler SM (1977) Do robust estimators work with real data? Ann Stat 5(6):1055–1098

    Article  Google Scholar 

  • Teunissen PJG (2006) Testing theory; an introduction. Series on mathematical geodesy and positioning, 2nd edn. Delft University of Technology, Delft

    Google Scholar 

  • Teunissen PJG (2018) Distributional theory for the DIA method. J Geodesy 92:59–80

    Article  Google Scholar 

  • Wieser A (2004) Reliability checking for GNSS baseline and network processing. GPS Solut 8:55–66

    Article  Google Scholar 

  • Wieser A, Brunner FK (2002) Short static GPS sessions: robust estimation results. GPS Solut 5(3):70–79

    Article  Google Scholar 

  • Wiśniewski Z (2009) Estimation of parameters in a split functional model of geodetic observations (M split estimation). J Geodesy 83:105–120

    Article  Google Scholar 

  • Wiśniewski Z (2010) M split (q) estimation: estimation of parameters in a multi split functional model of geodetic observations. J Geodesy 84(6):355–372

    Article  Google Scholar 

  • Wyszkowska P, Duchnowski R (2019) Msplit estimation based on L1 norm condition. J Surv Eng 145(3):04019006

    Article  Google Scholar 

  • Xu S (1987a) An F-T method for multiple outliers. J Wuhan Tech Univ Surv Mapp 12(02):41–46

    Google Scholar 

  • Xu P (1987b) A test method for many outliers. ITC J 4:324–317

    Google Scholar 

  • Xu P (1989a) On robust estimation with correlated observations. Bull Géodésique 63(3):237–252

    Article  Google Scholar 

  • Xu P (1989b) Statistical criteria for robust methods. ITC J 1:37–40

    Google Scholar 

  • Xu P (1993) Consequences of constant parameters and confidence intervals of robust estimation. Bollettino di Geodesia e Scienze Affini 52(3):231–249

    Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geodesy 79:146–159

    Article  Google Scholar 

  • Yang Y (1994) Robust estimation for dependent observations. Manuscripta geodaetica 19(1):10–17

    Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73(5):268–274

    Article  Google Scholar 

  • Yang Y, Xu J (2016) GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation. Geodesy Geodyn 7(2):117–123

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimator for correlated observations based on bifactor equivalent weights. J Geodesy 76(6–7):353–358

    Article  Google Scholar 

  • Yang L, Shen Y, Lou L (2011) Equivalent weight robust estimation method based on median parameter estimates. Acta Geodaetica Cartogr Sin 40(1):28–32

    Google Scholar 

  • Yang L, Wang J, Knight NL, Shen Y (2013) Outlier separability analysis with a multiple alternative hypotheses test. J Geodesy 87(6):591–604

    Article  Google Scholar 

  • Yang L, Shen Y, Li B, Rizos C (2017) Extension of internal reliability analysis regarding separability analysis. J Surv Eng 143(3):04017002

    Article  Google Scholar 

  • Yang L, Shen Y, Li B (2019a) M-estimation using unbiased median variance estimate. J Geodesy 93:911–925

    Article  Google Scholar 

  • Yang L, Nie Y, Shen Y (2019b) Characteristic analysis of 3D outlier detection method for GNSS network adjustments. J Surv Eng 145(4):04019014

    Article  Google Scholar 

  • Yohai VJ (1987) High breakdown-point and high efficiency robust estimates for regression. Annal Stat 15(2):642–656

    Article  Google Scholar 

  • Yu H, Shen Y, Yang L, Nie Y (2019) Robust M-estimation using the equivalent weights constructed by removing the influence of an outlier on the residuals. Surv Rev 51(364):60–69

    Article  Google Scholar 

  • Zaminpardaz S, Teunissen PJG (2019) DIA-datasnooping and identifiability. J Geodesy 93(1):85–101

    Article  Google Scholar 

  • Zienkiewicz MH (2014) Application of M split estimation to determine control points displacements in networks with unstable reference system. Surv Rev 47(342):174–180

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (41731069 and 41504022). The responsible editor and three reviewers are gratefully acknowledged for their constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

L.Y. designed the research, processed data and wrote the paper draft. Y.S. proposed the key idea, supervised the research and revised the manuscript.

Corresponding author

Correspondence to Yunzhong Shen.

Appendix

Appendix

The Danish method was proposed by Krarup (Krarup et al. 1980) and is purely heuristic with no rigorous statistical theory. The methods work by performing IRLS with the following weight shrinking function (Caspary 1987; Knight and Wang 2009)

$$ \gamma_{ii} = \left\{ {\begin{array}{*{20}l} 1 & {\left| {\tilde{v}_{i} } \right| \le k_{0} } \\ {e^{{ - \frac{{\left| {\tilde{v}_{i} } \right|}}{{k_{0} }}}} } & {\left| {\tilde{v}_{i} } \right| > k_{0} } \\ \end{array} } \right. $$
(38)

The M estimators were first proposed by Huber (1964, 1981), and the weight reduction factor is given by

$$ \gamma_{ii} = \left\{ {\begin{array}{*{20}c} 1 & {\left| {\tilde{v}_{i} } \right| \le k_{0} } \\ {\frac{{k_{0} }}{{\left| {\tilde{v}_{i} } \right|}}} & {\left| {\tilde{v}_{i} } \right| > k_{0} } \\ \end{array} } \right. $$
(39)

The shrinking factor for Hampel method is expressed as (Hampel et al. 1986)

$$ \gamma_{ii} = \left\{ {\begin{array}{*{20}c} 1 & {\left| {\tilde{v}_{i} } \right| \le k_{0} } \\ {\frac{{k_{0} }}{{\left| {\tilde{v}_{i} } \right|}}} & {k_{0} < \left| {\tilde{v}_{i} } \right| \le k_{1} } \\ {\frac{{k_{0} }}{{\left| {\tilde{v}_{i} } \right|}}\frac{{k_{2} - \left| {\tilde{v}_{i} } \right|}}{{k_{2} - k_{1} }}} & {k_{1} < \left| {\tilde{v}_{i} } \right| \le k_{2} } \\ 0 & {\left| {\tilde{v}_{i} } \right| > k_{2} } \\ \end{array} } \right. $$
(40)

The above three weight reduction functions are used for Danish, Huber and Hampel methods, respectively, in Sect. 4, to replace Eq. (9) for IGGIII methods. To applying these functions into correlated observations, bifactor reduction scheme of Eqs. (6)–(8) is always used (Figs. 9, 10, 11, and 12).

Fig. 9
figure 9

MPE results of the Danish, Huber and Hampel methods for case 1 when a 3D outlier vector is added into each baseline, respectively

Fig. 10
figure 10

Cumulative distribution probability (CDF) of the test statistics \( \left| {\tilde{v}_{i} } \right| \) for conventional methods (a) and \( \left| {w_{il} } \right| \) for the proposed method (b) when an outlier vector with a size of σ, 2σ and 3σ is simulated at the baseline B2 to B13. (OF is for outlier-free case)

Fig. 11
figure 11

Probability of test statistics \( \left| {w_{il} } \right|, \left| {\tilde{v}_{i} } \right| \) smaller than the corresponding thresholds as the magnitude of the outlier at baseline B2 to B1 increases from 0.5σ to 6σ, respectively

Fig. 12
figure 12

MPE results of the Danish, Huber and Hampel methods for case 2 when a scaled outlier is added into the vertical component of the baseline, respectively

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Shen, Y. Robust M estimation for 3D correlated vector observations based on modified bifactor weight reduction model. J Geod 94, 31 (2020). https://doi.org/10.1007/s00190-020-01351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01351-1

Keywords

Navigation