Skip to main content
Log in

Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The ionosphere has been considered as one of the major error sources in GNSS signal propagation, and it is still difficult to be modeled precisely, especially for real-time positioning applications. The commonly used ionospheric models are usually based on the one-layer approximation, which neglects the ionospheric variation in the vertical domain and limits the scope of improvement over one-layer models. A new ionospheric model based on the two-layer approximation and two spherical harmonic (SH) functions is proposed in this contribution, where a quasi-globe projection is designed to avoid the inherent ill-posed problem and retain the physical meaning of the SH when regional data are used. GPS and BDS data from the National Positioning Infrastructure of Australia and Crustal Movement Observation Network of China are used for validating the new model’s performance in different areas and different periods. Results show (1) the precision of ionospheric TEC estimates from the new model can be improved by about 26% and 31% in the cross-validation experiment compared to the traditional one-layer model in Australian and Chinese regions, respectively; (2) the positioning accuracy of kinematic single-frequency precise point positioning (SF-PPP) in the experimental regions using the new model reaches about 0.7 m and 0.8 m in the horizontal and vertical components, respectively, in comparison with the one-layer model’s 1.0 m (horizontal) and 1.4 m (vertical); (3) the convergence time of the SF-PPP using the new model is 5–10 min for achieving a sub-meter level of positioning accuracy in both horizontal and vertical components, whereas it needs 30–40 min in case the one-layer model is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allain D, Mitchell C (2009) Ionospheric delay corrections for single-frequency GPS receivers over Europe using tomographic mapping. GPS Solut 13(2):141–151

    Article  Google Scholar 

  • Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geodesy 83(8):773–785

    Article  Google Scholar 

  • Cui Jianhui, Tang Weiming, Jin Lei, Deng Chenlong, Zou Xuan, Shengfeng G (2018) An improved ionosphere interpolation algorithm for network RTK in low-latitude regions. GPS Solut 22:109

    Article  Google Scholar 

  • De Santis A, Torta JM, Lowes FJ (1999) Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics. Phys Chem Earth Part A 24(11–12):935–941

    Article  Google Scholar 

  • Ding WW, Ou JK, Li ZS, Yuan YB (2014) An instantaneous re-Initialization method of real time kinematic PPP by adding ionospheric delay constraints. Chin J Geophys 57(3):280–292

    Article  Google Scholar 

  • García-Rigo A, Roma-Dollase D, Hernández-Pajares M, Li ZS, Wang NB (2018) Towards RT assessment of ionospheric monitoring within IAG’s RTIM-WG. EGU General Assembly, Vienna

    Google Scholar 

  • Haines GV (1988) Computer programs for spherical cap harmonic analysis of potential and general fields. Comput Geosci 14(4):413–448

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1997) Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci 32(3):1081–1089

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geodesy 91(12):1405–1414

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Garcia-Fernàndez M, Orus-Perez R, García-Rigo A (2018) Precise ionospheric electron content monitoring from single-frequency GPS receivers. GPS Solut 22(102):11

    Google Scholar 

  • IPS Radio and Space Services (2005) The Australian ionosphere. IPS Radio An Space Service, Australian Government. https://www.skatelescope.org/wp-content/uploads/2012/06/64_Appendix-2.5.1.pdf

  • Juan JM, Rius A, Hernández Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396

    Article  Google Scholar 

  • Juan JM, Sanz J, Hernández-Pajares M, Samson J, Tossaint M, Aragón-Àngel A, Salazar D (2012a) Wide area RTK: a satellite navigation system based on precise real-time ionospheric modelling. Radio Sci 47(2):1–14

    Article  Google Scholar 

  • Juan JM, Hernandez-Pajares M, Sanz J, Ramos-Bosch P, Aragon-Angel A, Orus R, Ochieng W, Feng S, Jofre M, Coutinho P (2012b) Enhanced precise point positioning for GNSS users. IEEE Trans Geosci Remote Sens 50(10):4213–4222

    Article  Google Scholar 

  • Lanyi G, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci 23(4):483–492

    Article  Google Scholar 

  • Li ZS (2012) Study on the mitigation of ionospheric delay and the monitoring of global ionospheric TEC based on GNSS/Compass, Dissertation, Institute of Geodesy and Geophysics, University of Chinese Academy of Sciences, Wuhan, China (in Chinese)

  • Li ZS, Yuan YB, Li H, Ou JK, Huo XL (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geodesy 86(11):1059–1076

    Article  Google Scholar 

  • Li ZS, Fan L, Yuan YB, Sandra V, Peter DB, Yuan H, Zhong SM (2014) Mitigation of ionospheric delay in GPS/BDS single frequency PPP: assessment and application. In: The 5th China satellite navigation conference, Nanjing, China, pp 477–499

  • Liu L, Zhao B, Wan W, Ning B, Zhang M, He M (2009) Seasonal variations of the ionospheric electron densities retrieved from constellation observing system for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res Space Phys 114(A2):1–14

    Article  Google Scholar 

  • Liu J, Chen R, Wang Z, Zhang H (2011) Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solut 15(2):109–119

    Article  Google Scholar 

  • Liu J, Chen R, An J, Wang Z, Hyyppa J (2013) Spherical cap harmonic analysis of the arctic ionospheric TEC for one solar cycle. J Geophys Res Space Phys 119(1):601–619

    Article  Google Scholar 

  • Mannucci AJ, Iijima BA, Lindqwister UJ, Pi X, Sparks L, Wilson BD (1999) GPS and ionosphere: review of radio science 1996–1999. Oxford University Press, New York

    Google Scholar 

  • Menditto A, Patriarca M, Magnusson B (2007) Understanding the meaning of accuracy, trueness and precision. Accred Qual Assur 12(1):45–47

    Article  Google Scholar 

  • Odijk D (2002) Fast precise GPS positioning in the presence of ionospheric delays. Dissertation, Delft University of Technology, Delft

  • Roma-Dollase D, Hernández-Pajares M, García-Rigo A, Laurichesse D, Schmidt M, Erdogan E, Yuan YB, Li ZS, Gómez-Cama JM, Krankowski A (2016) Real time global ionospheric maps: a low latency alternative to traditional GIMs. In: The 19th international Beacon satellite symposium (BSS 2016). Trieste, Italy. http://hdl.handle.net/2117/104472

  • Rovira-Garcia A, Juan JM, Sanz J, González-Casado G (2015) A worldwide ionospheric model for fast precise point positioning. IEEE Trans Geosci Remote Sens 53(8):4596–4604

    Article  Google Scholar 

  • Russian Space Systems OJSC (2016) GLONASS interface control document: general description of CDMA signals (Edition 1.0), http://russianspacesystems.ru/wp-content/uploads/2016/08/IKD.-Obshh.-opis.-Red.-1.0-2016.pdf

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the global positioning system. Dissertation, Astronomical Institutes, University of Bern, Berne

  • Tang W, Jin L, Cui J, Shi C, Zhang Y (2016) GNSS network RTK regional ionospheric modelling studies and performance analysis. J Navig 69(01):211–224

    Article  Google Scholar 

  • Venkata Ratnam D, Sarma AD (2012) Modeling of low-latitude ionosphere using GPS data with SHF model. IEEE Trans Geosci Remote Sens 50(3):972–980

    Article  Google Scholar 

  • Wang NB, Yuan YB, Li ZS, Oliver M, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geodesy 90(3):209–228

    Article  Google Scholar 

  • Warnant R, Foelsche U, Aquino M, Bidaine B, Gherm V, Hoque MM, Kutiev I, Lejeune S, Luntama JP, Spits J (2010) Mitigation of ionospheric effects on GNSS. Ann Geophys 52(3–4):373–390

    Google Scholar 

  • Yuan YB, Li ZS, Wang NB, Zhang BC, Li H, Li M, Xuo XL, Ou JK (2015) Monitoring the ionosphere based on the crustal movement observation network of China. Geodesy GeoDyn 6(2):73–80

    Article  Google Scholar 

  • Zhang BC (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51(7):972–988

    Article  Google Scholar 

  • Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the IGS Multi-GNSS Experiment (MGEX) and Geosciences Australia for providing access to their data. This work was partially supported by the China Natural Science Funds (Nos. 41674043, 41704038, 41730109, and 41621063), the National Key Research Program of China ‘Collaborative Precision Positioning Project’ (No. 2016YFB0501900), Beijing Nova program (xx2017042) and the Australian Endeavour Research Fellowship (No. 5134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zishen Li or Ningbo Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, N., Wang, L. et al. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. J Geod 93, 1659–1671 (2019). https://doi.org/10.1007/s00190-019-01275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01275-5

Keywords

Navigation