Skip to main content
Log in

Reconstruction of 2D/3D ionospheric disturbances in high-latitude and arctic regions during a geomagnetic storm using GNSS carrier TEC: a case study of the 2015 great storm

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

On 2015 March, a G4-level geomagnetic storm hit the earth and then triggered global ionospheric disturbances. A considerable number of studies have been published showing various ionospheric responses in low- and mid-latitude regions. In contrary, very limited efforts have been made on high-latitude or polar regions. Therefore, this paper reconstructed and investigated the 2D/3D ionospheric disturbances in high-latitude and arctic regions during this great storm using multiprocessing methods. First, four longitudinal global navigation satellite system stations’ sectors are selected on Polar area, and the second-order differential of total electron content (dTEC) of each sectors is calculated to detect the ionosphere anomaly during the time of interests. Compared with the “auroral oval” distribution and the precipitating of auroral electrons data from Defense Meteorological Satellite Program, the triggering mechanism of the detected anomaly is discussed. Second, based on the dTEC detection results and the auroral electrojet index series, two disturbances processes have been identified. Then, a new computerized ionospheric tomography (CIT) algorithm called MFCIT (CIT with mapping function) is introduced, and the 3D ionosphere images under daytime (LT06:00–LT06:30) and nighttime (LT21:00–LT22:00) over Alaska are individually inverted at the temporal resolution of 1 min. In contrast with magnetic field lines distribution, the relationship between disturbances and geomagnetic fields has been analyzed. Last, two vertical electron motions are monitored with the CIT images. As the two motions occur at two different steps of the geomagnetic storm, the characteristics and amplitudes of the vertical movements can be distinguished. The physical mechanisms for the vertical motions are discussed. The upward vertical motion during the first disturbance may be induced by the eastward abnormal penetration electric field, while the second disturbance may be the outcome of the combined influences of the abnormal electric field and the precipitating of auroral electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allain DJ, Mitchell CN (2010) Comparison of 4D tomographic mapping versus thin-shell approximation for ionospheric delay corrections for single-frequency GPS receivers over North America. GPS Solut 14(3):279–291

    Article  Google Scholar 

  • Araki T, Allen JH, Araki Y (1985) Extension of a polar ionospheric current to the nightside equator. Planet Space Sci 33(1):11–16

    Article  Google Scholar 

  • Astafyeva E, Zakharenkova I, Forster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res Space Phys 120(10):9023–9037. https://doi.org/10.1002/2015ja021629

    Article  Google Scholar 

  • Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85(A4):1669–1686. https://doi.org/10.1029/JA085iA04p01669

    Article  Google Scholar 

  • Buonsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88(3–4):563–601. https://doi.org/10.1023/A:1005107532631

    Article  Google Scholar 

  • Bust GS, Garner TW, Gaussiran TL (2004) Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J Geophys Res 109:A11312. https://doi.org/10.1029/2003JA010234

    Article  Google Scholar 

  • Cherniak I, Zakharenkova I, Redmon RJ (2015) Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: ground-based GPS measurements. Space Weather 13(9):585–597. https://doi.org/10.1002/2015SW001237

    Article  Google Scholar 

  • Danilov AD (2013) Ionospheric F-region response to geomagnetic disturbances. Adv Space Res 52(3):343–366. https://doi.org/10.1016/j.asr.2013.04.019

    Article  Google Scholar 

  • Förster M, Jakowski N (2000) Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. Surv Geophys 21(2000):47–87

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Rishbeth H, Moffett RJ, Quegan S (1996) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101(A2):2343–2353

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J, Solé JG (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res Space Phys 103(A9):20789–20796

    Article  Google Scholar 

  • Ho CM, Mannucci AJ, Lindqwister UJ, Pi X, Tsurutani BT (1996) Global ionosphere perturbations monitored by the worldwide GPS network. Geophys Res Lett 23(22):3219–3222

    Article  Google Scholar 

  • Kelley MC, Makela JJ, Chau JL, Nicolls MJ (2003) Penetration of the solar wind electric field into the magnetosphere/ionosphere system. Geophys Res Lett 30(4):1158. https://doi.org/10.1029/2002GL016321

    Article  Google Scholar 

  • Kikuchi T, Lühr H, Kitamura T, Saka O, Schlegel K (1996) Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J Geophys Res 101(A8):17161–17174. https://doi.org/10.1029/96JA01299

    Article  Google Scholar 

  • Kikuchi T, Lühr H, Schlegel K, Tachihara H, Shinohara M, Kitamura TI (2000) Penetration of auroral electric fields to the equator during a substorm. J Geophys Res 105(A10):23251–23261. https://doi.org/10.1029/2000JA900016

    Article  Google Scholar 

  • Kivelson MG, Russell CT (1983) The interaction of flowing plasmas with planetary ionospheres: a Titan–Venus comparison. J Geophys Res 88(A1):49–57

    Article  Google Scholar 

  • Kong J, Yao YB, Liu L, Zhai CZ, Wang ZM (2016) A new computerized ionosphere tomography model using the mapping function and an application in study of seismic-ionosphere disturbance. J Geod 90(8):741–755. https://doi.org/10.1007/s00190-016-0906-9

    Article  Google Scholar 

  • Liu J, Wang WB, Burns A, Yue XN, Zhang SR, Zhang YL, Huang CS (2016) Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J Geophys Res Space Phys 121(1):727–744. https://doi.org/10.1002/2015JA021832

    Article  Google Scholar 

  • Mannucci A, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”. Geophys Res Lett 32(12):L12S02. https://doi.org/10.1029/2004gl021467

    Article  Google Scholar 

  • Mendillo M (2006) Storms in the ionosphere: patterns and processes for total electron content. Rev Geophys 44(4):RG4001. https://doi.org/10.1029/2005rg000193

    Article  Google Scholar 

  • Mendillo M, Klobuchar JA, Hajeb-Hosseinieh H (1974) Ionosphere disturbances: evidence for the contraction of the plasmasphere during severe geomagnetic storms. Planet Space Sci 22(2):223–236. https://doi.org/10.1016/0032-0633(74)90026-9

    Article  Google Scholar 

  • Mitchell CN, Walker IK, Pryse SE, Kersley I, McCrea IW, Jones TB (1998) First complementary observations by ionospheric tomography, the EISCAT Svalbard radar and the CUTLASS HF radar. Ann Geophys 16(11):1519–1522

    Google Scholar 

  • Nayak C, Tsai LC, Su SY, Jamjareegulgarn P (2016) Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17 March 2015. J Geophys Res Space Phys 121(8):7941–7960. https://doi.org/10.1002/2016ja022489

    Article  Google Scholar 

  • Nishida A (1968) Geomagnetic DP 2 fluctuations and associated magnetospheric phenomena. J Geophys Res 73(5):1795–1803. https://doi.org/10.1029/JA073i005p01795

    Article  Google Scholar 

  • Prölss G (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of Atmospheric Electrodynamics, vol II. CRC Press, Boca Raton, pp 195–248

    Google Scholar 

  • Pryse SE, Kersley L, Williams MJ (1998) Electron density structures in the polar cap imaged by ionospheric tomography. Adv Space Res 22(9):1385–1389

    Article  Google Scholar 

  • Ramsingh SS, Sripathi S, Sreekumar S, Banola S, Emperumal K, Tiwari P, Kumar BS (2015) Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: results from a chain of ground-based observations over Indian sector. J Geophys Res Space Phys 120:10,864–10,882. https://doi.org/10.1002/2015ja021509

    Article  Google Scholar 

  • Redmon RJ, Denig WF, Kilcommons LM, Knipp DJ (2017) New DMSP database of precipitating auroral electrons and ions. J Geophys Res Space Phys 122:9056–9067. https://doi.org/10.1002/2016JA023339

    Article  Google Scholar 

  • Richmond A, Lu G (2000) Upper-atmospheric effects of magnetic storms: a brief tutorial. J Atmos Sol Terr Phys 62(12):1115–1127

    Article  Google Scholar 

  • Sims RW, Pryse SE, Denig WF (2005) Spatial structure of summertime ionospheric plasma near magnetic noon. Ann Geophys 23(1):25–37

    Article  Google Scholar 

  • Spiro RW, Wolf RA, Fejer BG (1988) Penetrating of high-latitude-electric-field effects to low latitudes during sundial 1984. Ann Geophys 6:39–49

    Google Scholar 

  • Stolle C, Schlüter S, Heisec S, Jacobia C, Jakowski N, Friedel S, Kürschnere D, Lührc H (2005) GPS ionospheric imaging of the north polar ionosphere on 30 October 2003. Adv Space Res 36(11):2201–2206

    Article  Google Scholar 

  • Tsugawa T, Kotake N, Otsuka Y, Saito A (2007) Medium-scale traveling ionospheric disturbances observed by GPS receiver network in Japan: a short review. GPS Solut 11(2):139–144

    Article  Google Scholar 

  • Wanner B (2015) Effect on WAAS from iono activity on March 17–18, 2015. WAAS technical report William J. Hughes Technical Center Atlantic City International Airport, NJ March 19. http://www.nstb.tc.faa.gov/Discrepancy%20Reports%20PDF/DR%20127%20Effect%20on%20WAAS%20from%20Iono%20Activity%20March%2017%202015.pdf

  • Wen DB, Yuan Y, Ou J, Huo X, Zhang K (2007) Ionospheric temporal and spatial variations during the 18 August 2003 storm over China. Earth Planets Space 59(4):313–317

    Article  Google Scholar 

  • Yao YB, Liu L, Kong J, Zhai CZ (2016) Analysis of the global ionospheric disturbances of the March 2015 great storm. J Geophys Res Space Phys 121(12):157–170. https://doi.org/10.1002/2016JA023352

    Article  Google Scholar 

  • Yin P, Mitchell CN, Spencer PSJ, Foster JC (2004) Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys Res Lett 31(12):261–268. https://doi.org/10.1029/2004GL019899

    Article  Google Scholar 

  • Yizengaw E, Moldwin MB (2005) The altitude extension of the mid-latitude trough and its correlation with plasmapause position. Geophys Res Lett 320(9):387–404. https://doi.org/10.1029/2005GL022854

    Article  Google Scholar 

  • Yizengaw E, Zesta E, Moldwin MB, Damtie B, Mebrahtu A, Valladares CE, Pfaff RF (2012) Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics. J Geophys Res 117:A07312. https://doi.org/10.1029/2011JA017454

    Article  Google Scholar 

  • Zhao B, Wan W, Liu L (2005) Responses of equatorial anomaly to the October–November 2003 superstorms. Ann Geophys 23(3):693–706

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the USUD for providing the GNSS data in Alaska (ftp://garner.ucsd.edu/archive/garner/), IRI group for providing IRI2012 model (https://omniweb.gsfc.nasa.gov/vitmo/iri2012vitmo.html), the ESA EarthNet service for providing the Swarm data (http://earth.esa.int/swarm), the DMSP for providing electron penetration data (http://www.ngdc.noaa.gov/stp/satellite/dmsp/), the IGS for providing the orbit data, GNSS data (ftp://cddis.gsfc.nasa.gov/gps/data/). We also thank the NASA for providing magnetic index data and the ACE Science Center for providing solar wind data (http://omniweb.gsfc.nasa.gov/form/dx1.html). This research was financially supported by the National Natural Fund of China (41604002, 41531069 and 41874033), the Natural Fund of China (41574028), the National Key Research and Development Program of China (2016YFB0501803 and 2017YFA0603102), the Fundamental Research Funds for the Central Universities (2042016kf0037), and the open research fund of state key laboratory of information engineering in surveying, mapping and remote sensing, Wuhan University. Special thanks are due to Dr. Changzhi Zhai in School of Geodesy and Geomatics, Wuhan University, for discussing the CIT algorithms and the electric field estimation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Li, F., Yao, Y. et al. Reconstruction of 2D/3D ionospheric disturbances in high-latitude and arctic regions during a geomagnetic storm using GNSS carrier TEC: a case study of the 2015 great storm. J Geod 93, 1529–1541 (2019). https://doi.org/10.1007/s00190-019-01266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01266-6

Keywords

Navigation