Skip to main content
Log in

Solution of the weighted symmetric similarity transformations based on quaternions

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

A Correction to this article was published on 16 July 2018

This article has been updated

Abstract

A new method through Gauss–Helmert model of adjustment is presented for the solution of the similarity transformations, either 3D or 2D, in the frame of errors-in-variables (EIV) model. EIV model assumes that all the variables in the mathematical model are contaminated by random errors. Total least squares estimation technique may be used to solve the EIV model. Accounting for the heteroscedastic uncertainty both in the target and the source coordinates, that is the more common and general case in practice, leads to a more realistic estimation of the transformation parameters. The presented algorithm can handle the heteroscedastic transformation problems, i.e., positions of the both target and the source points may have full covariance matrices. Therefore, there is no limitation such as the isotropic or the homogenous accuracy for the reference point coordinates. The developed algorithm takes the advantage of the quaternion definition which uniquely represents a 3D rotation matrix. The transformation parameters: scale, translations, and the quaternion (so that the rotation matrix) along with their covariances, are iteratively estimated with rapid convergence. Moreover, prior least squares (LS) estimation of the unknown transformation parameters is not required to start the iterations. We also show that the developed method can also be used to estimate the 2D similarity transformation parameters by simply treating the problem as a 3D transformation problem with zero (0) values assigned for the z-components of both target and source points. The efficiency of the new algorithm is presented with the numerical examples and comparisons with the results of the previous studies which use the same data set. Simulation experiments for the evaluation and comparison of the proposed and the conventional weighted LS (WLS) method is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 16 July 2018

    In the original article, Eq. (19), the covariance matrix of the source coordinates in the second term in the parenthesis.

References

  • Akyilmaz O (2010) A new approach to geodetic datum transformations. Prof. Dr. Tevfik Ayan Geodesy Colloquium, Istanbul Technical University, Faculty of Civil Engineering, 5 Nov 2010, Istanbul, Turkey (unpublished presentation in Turkish)

  • Akyilmaz O (2011) Solution of the heteroscedastic datum transformation problems. In: Abstracts of the 1st international workshop on the quality of geodetic observation and monitoring systems QuGOMS, Garching/Munich, Germany (in CD-ROM), 13–15 April 2011

  • Altmann SL (1986) Rotations, quaternions, and double groups. Dover Publications, Clarendon, Oxford

    Google Scholar 

  • Amiri-Simkooei A, Jazaeri S (2012) Weighted total least squares formulated by standard least squares theory. J Geod Sci 2(2):113–124

    Google Scholar 

  • Amiri-Simkooei A, Zangeneh-Nejad F, Asgari J (2016) On the covariance matrix of weighted total least-squares estimates. J Surv Eng 142(3):04015014

    Article  Google Scholar 

  • Baarda W (1978) Mathematical models, European organisation for experimental photogrammetric research. Publ Off 11:73–101

    Google Scholar 

  • Case K, Kruizinga G, Wu S (2010) Grace level 1B data product user handbook. JPL Publication D-22027

  • Chang G (2015) On least-squares solution to 3D similarity transformation problem under Gauss–Helmert model. J Geod 89(6):573–576

    Article  Google Scholar 

  • Chang G (2016) Closed form least-squares solution to 3D symmetric Helmert transformation with rotational invariant covariance structure. Acta Geod Geophys 51(2):237–244

    Article  Google Scholar 

  • Chang G, Xu T, Wang Q, Liu M (2017) Analytical solution to and error analysis of the quaternion based similarity transformation considering measurement errors in both frames. Measurement 110:1–10

    Article  Google Scholar 

  • Fang X (2014) A total least squares solution for geodetic datum transformations. Acta Geod Geophys 49(2):189–207

    Article  Google Scholar 

  • Fang X (2015) Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations. J Geod 89(5):459–469

    Article  Google Scholar 

  • Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  • Felus YA (2004) Application of total least squares for spatial point process analysis. J Surv Eng 130(3):126–133

    Article  Google Scholar 

  • Felus YA, Burtch RC (2009) On symmetrical three-dimensional datum conversion. GPS Solut 13(1):65

    Article  Google Scholar 

  • Förste C, Schwintzer P, Reigber C (2002) Format description: the champ data format. Technical report, CH-GFZ-FD-001

  • Golub GH, Van Loan CF (1980) An analysis of the total least squares problem. SIAM J Numer Anal 17(6):883–893

    Article  Google Scholar 

  • Grafarend E, Schaffrin B (1982) Vectors, quaternions and spinors-a discussion of algebras underlying three-dimensional geodesy-(B. Schaffrin). Feestbundel terGelegenheid van de 65ste Verjaardag van Professor Baarda, Deel I, ed. Geodetic Computer Centre (LGR), Delft 1982, 111–134

  • Grafarend E, Awange J (2003) Nonlinear analysis of the three-dimensional datum transformation. J Geod 77(1–2):66–76

    Article  Google Scholar 

  • Grafarend EW, Krumm F, Okeke F (1995) Curvilinear geodetic datum transformations. Oceanogr Lit Rev 2(43):135

    Google Scholar 

  • Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4):629–642

    Article  Google Scholar 

  • Jazaeri S, Amiri-Simkooei A, Sharifi M (2014) Iterative algorithm for weighted total least squares adjustment. Surv Rev 46(334):19–27

    Article  Google Scholar 

  • Jin Y, Tong X, Li L, Zhang S, Liu S (2015) Total least L1-and L2-norm estimations of a coordinate transformation model with a structured parameter matrix. Stud Geophys Geod 59(3):345–365

    Article  Google Scholar 

  • Kanatani K (1990) Group-theoretical methods in image understanding. Springer, Berlin

    Book  Google Scholar 

  • Kanatani K, Niitsuma H (2012) Optimal computation of 3-D similarity: Gauss–Newton vs. Gauss–Helmert. Comput Stat Data Anal 56(12):4470–4483

    Article  Google Scholar 

  • Lenzmann L, Lenzmann E (2004) Rigorous adjustment of the nonlinear Gauss Helmert model. Allg Vermess Nachr 111(2):68–73

    Google Scholar 

  • Mahboub V (2012) On weighted total least-squares for geodetic transformations. J Geod 86(5):359–367

    Article  Google Scholar 

  • Mahboub V, Amiri-Simkooei A, Sharifi M (2013) Iteratively reweighted total least squares: a robust estimation in errors-in-variables models. Surv Rev 45(329):92–99

    Google Scholar 

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geod 84(12):751–762

    Article  Google Scholar 

  • Ohta N, Kanatani K (1998) Optimal estimation of three-dimensional rotation and reliability evaluation. IEICE Trans Inf Syst 81(11):1247–1252

    Google Scholar 

  • Pervin E, Webb JA (1982) Quaternions in computer vision and robotics. Technical report, Department of Computer Science, Carnegie-Mellon Univ, Pittsburgh, PA

  • Pope AJ (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th annual meeting. American Society of Photogrammetry, Washington DC

  • Quee H (1983) Quaternion algebra applied to polygon theory in three dimensional space. Publications on geodesy, New Series, Netherlands Geodetic Commission

    Google Scholar 

  • Sanso F (1973) An exact solution of the roto-translation problem. Photogrammetria 29(6):203–216

    Article  Google Scholar 

  • Schaffrin B, Lee I, Choi Y, Felus Y (2006) Total least-squares (TLS) for geodetic straight-line and plane adjustment. Boll Geod Sci Affin 65(3):141–168

    Google Scholar 

  • Schaffrin B, Neitzel F, Uzun S, Mahboub V (2012) Modifying Cadzow’s algorithm to generate the optimal TLS-solution for the structured EIV-model of a similarity transformation. J Geod Sci 2(2):98–106

    Google Scholar 

  • Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geod 82(7):415–421

    Article  Google Scholar 

  • Schut G (1960) On exact linear equations for the computation of the rotational elements of absolute orientation. Photogrammetria 15:34–37

    Article  Google Scholar 

  • Shen Y-Z, Chen Y, Zheng D-H (2006) A quaternion-based geodetic datum transformation algorithm. J Geod 80(5):233–239

    Article  Google Scholar 

  • Terzakis G, Culverhouse P, Bugmann G, Sharma S, Sutton R (2014) On quaternion based parameterization of orientation in computer vision and robotics. J Eng Sci Technol Rev 7(1):82–93

    Google Scholar 

  • Teunissen P (1985) The geometry of geodetic inverse linear mapping and non-linear adjustment. Publ Geod 8(1):1–186 Netherlands Geodetic Commission

    Google Scholar 

  • Teunissen PJ (1988) The non-linear 2d symmetric Helmert transformation: an exact non-linear least-squares solution. Bull Géod 62(1):1–16

    Article  Google Scholar 

  • Thompson E (1958) An exact linear solution of the problem of absolute orientation. Photogrammetria 13:163–179

    Article  Google Scholar 

  • Vaníček P, Steeves RR (1996) Transformation of coordinates between two horizontal geodetic datums. J Geod 70(11):740–745

    Article  Google Scholar 

  • Vince J (2011) Quaternions for computer graphics. Springer, Berlin

    Book  Google Scholar 

  • Welsch W (1993) A general 7-parameter transformation for the combination, comparison and accuracy control of terrestrial and satellite network observations. Manuscr Geod 18(5):295–295

    Google Scholar 

  • Wu S-C, Kruizinga G, Bertiger w (2006) Algorithm theoretical basis document for grace level-1b data processing v1. 2. Jet Propulsion Laboratory, California Institute of Technology, California

    Google Scholar 

  • Xu P (2001) Random simulation and gps decorrelation. J Geod 75(7–8):0408–0423

    Article  Google Scholar 

  • Xu P, Liu J, Shi C (2012) Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J Geod 86(8):661–675

    Article  Google Scholar 

  • Xu P, Liu J, Zeng W, Shen Y (2014) Effects of errors-in-variables on weighted least squares estimation. J Geod 88(7):705–716

    Article  Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73(5):268–274

    Article  Google Scholar 

  • Zhao J (2016) Efficient weighted total least-squares solution for partial errors-in-variables model. Surv Rev 49(356):346–354

    Article  Google Scholar 

  • Zhou Y, Kou X, Li J, Fang X (2017) Comparison of structured and weighted total least-squares adjustment methods for linearly structured errors-in-variables models. J Surv Eng 143(1):04016019

    Article  Google Scholar 

Download references

Acknowledgements

The Editor-in-Chief Dr. Kusche is gratefully acknowledged for handling the manuscript in a timely manner. The responsible editor Dr. Xu and the three anonymous reviewers are appreciated for their constructive comments, which helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Akyilmaz.

Appendices

Appendix

1.1 A Partial derivatives of scaled rotation matrix

If we write the scaled rotation matrix \(k\mathbf {R}\) in terms of the scaled quaternion elements \(q_0\), \(q_1\), \(q_2\), \(q_3\) in following explicit form

$$\begin{aligned} k\mathbf {R}= \begin{bmatrix} q_0^2 + q_1^2 -q_2^2 - q_3^2&\quad 2(q_1 q_2 - q_0 q_3)&\quad 2(q_1 q_3 + q_0 q_2)\\ 2(q_1 q_2 + q_0 q_3)&\quad q_0^2 - q_1^2 +q_2^2 - q_3^2&\quad 2(q_2 q_3 - q_0 q_1)\\ 2(q_1 q_3 - q_0 q_2)&\quad 2(q_2 q_3 + q_0 q_1)&\quad q_0^2 - q_1^2 -q_2^2+q_3^2\\ \end{bmatrix}\nonumber \\ \end{aligned}$$
(A.1)

then the partial derivatives matrices \(\mathbf {Q}_i\) of matrix \(k\mathbf {R}\) w.r.t. \(q_j\) (for \(j=0,\,1,\,2,\,3\)) read:

$$\begin{aligned} \mathbf {Q}_0= & {} \frac{\partial k \mathbf {R}}{\partial q_0}=2 \begin{bmatrix} q_0&\quad -q_3&\quad q_2\\ q_3&\quad q_0&\quad -q_1\\ -q_2&\quad q_1&\quad q_0\\ \end{bmatrix} \end{aligned}$$
(A.2)
$$\begin{aligned} \mathbf {Q}_1= & {} \frac{\partial k \mathbf {R}}{\partial q_1}=2 \begin{bmatrix} q_1&\quad -q_2&\quad q_3\\ q_2&\quad -q_1&\quad -q_0\\ q_3&\quad q_0&\quad -q_1\\ \end{bmatrix}\end{aligned}$$
(A.3)
$$\begin{aligned} \mathbf {Q}_2= & {} \frac{\partial k \mathbf {R}}{\partial q_2}=2 \begin{bmatrix} -q_2&\quad q_1&\quad q_0\\ q_1&\quad q_2&\quad q_3\\ -q_0&\quad q_3&\quad -q_2\\ \end{bmatrix} \end{aligned}$$
(A.4)
$$\begin{aligned} \mathbf {Q}_3= & {} \frac{\partial k \mathbf {R}}{\partial q_3}=2 \begin{bmatrix} -q_3&\quad -q_0&\quad q_1\\ q_0&\quad -q_3&\quad q_2\\ q_1&\quad q_2&\quad q_3\\ \end{bmatrix} \end{aligned}$$
(A.5)

B Designation of covariance matrices for using 3D transformation algorithm to 2D problem

Let us denote the original (\(2n\times 1\)) vector of planar (2D) coordinates with \(\mathbf {x}=[x_1\, y_1\,\ldots \,x_n\, y_n ]^T\). Then we can explicitly express the (\(2n\times 2n\)) covariance matrix \(\varvec{\Sigma }_{xy}\) of planar coordinates as follows:

$$\begin{aligned} \varvec{\Sigma }_{xy}= \begin{bmatrix} \sigma _{x_1}^2&\quad \sigma _{x_1 y_1}&\quad \ldots&\quad \sigma _{x_1 x_n}&\sigma _{x_1 y_n}\\ \sigma _{y_1 x_1}&\quad \sigma _{y_1}^2&\quad \ldots&\quad \sigma _{y_1 x_n}&\sigma _{y_1 y_n}\\ \vdots&\vdots&\ddots&\vdots&\vdots \\ \sigma _{x_n x_1}&\quad \sigma _{x_n y_1}&\quad \ldots&\quad \sigma _{x_n}^2&\quad \sigma _{x_n y_n}\\ \sigma _{y_n x_1}&\quad \sigma _{y_n y_1}&\quad \ldots&\quad \sigma _{y_n x_n}&\quad \sigma _{y_n}^2\\ \end{bmatrix} \end{aligned}$$
(B.1)

The pseudo-3D coordinates of the above n-points is defined as the (\(3n\times 1\)) vector \(\mathbf {x}^p =[x_1\, y_1\,0\,\ldots \, x_n\, y_n\, 0]^T\) where 0 values are assigned to the z-component of each point.

Then, we can easily design a (\(3n\times 3n\)) covariance matrix \(\varvec{\Sigma }_{xyz}\) of the pseudo-3D coordinates in \(\mathbf {x}^p\) simply extending the original covariance matrix as follows:

$$\begin{aligned} \varvec{\Sigma }_{xyz}= \begin{bmatrix} \sigma _{x_1}^2&\quad \sigma _{x_1 y_1}&\quad 0&\quad \ldots&\quad \sigma _{x_1 x_n}&\quad \sigma _{x_1 y_n}&\quad 0\\ \sigma _{y_1 x_1}&\quad \sigma _{y_1}^2&\quad 0&\quad \ldots&\quad \sigma _{y_1 x_n}&\quad \sigma _{y_1 y_n}&\quad 0\\ 0&\quad 0&\quad 1&\quad \mathbf {0}^T&\quad 0&\quad 0\quad&\quad 0\\ \vdots&\quad \vdots&\quad \mathbf {0}&\quad \ddots&\quad \vdots&\quad \vdots&\quad \mathbf {0}\\ \sigma _{x_n x_1}&\quad \sigma _{x_n y_1}&\quad 0&\quad \ldots&\quad \sigma _{x_n}^2&\sigma _{x_n y_n}&\quad 0\\ \sigma _{y_n x_1}&\quad \sigma _{y_n y_1}&\quad 0&\quad \ldots&\quad \sigma _{y_n x_n}&\quad \sigma _{y_n}^2&\quad 0\\ 0&\quad 0&\quad 0&\quad \mathbf {0}^T&\quad 0&\quad 0&\quad 1\\ \end{bmatrix}\nonumber \\ \end{aligned}$$
(B.2)

where the boldface \(\mathbf {0}\) is a zero vector of size (\(3\times 1\)) in definition. Also note that instead of ones (1) on diagonal, one can use any other positive real small values (e.g., \(10^{-12}\), depending on the application data) suitable for numerical computations, i.e., avoiding rank deficiency of the extended covariance matrix \(\varvec{\Sigma }_{xyz}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercan, H., Akyilmaz, O. & Aydin, C. Solution of the weighted symmetric similarity transformations based on quaternions. J Geod 92, 1113–1130 (2018). https://doi.org/10.1007/s00190-017-1104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1104-0

Keywords

Navigation