Skip to main content
Log in

Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In this paper we derive the asymptotic distributions of the estimated weights and of estimated performance measures of the minimum value-at-risk portfolio and of the minimum conditional value-at-risk portfolio assuming that the asset returns follow a strictly stationary process. It is proved that the estimated weights as well as the estimated performance measures are asymptotically multivariate normally distributed. We also present an asymptotic test for the weights and a joint test for the characteristics of both portfolios. Moreover, the asymptotic densities of the estimated performance measures are compared with the corresponding exact densities. It is shown that the asymptotic approximation performs well even for the moderate sample size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adcock CJ (2010) Asset pricing and portfolio selection based on the multivariate extended skew-student-t distribution. Ann Oper Res 176:221–234

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander GJ, Baptista MA (2002) Economic implication of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J Econ Dyn Control 26:1159–1193

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander GJ, Baptista MA (2004) A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Manag Sci 50:1261–1273

    Article  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9:203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Basak GK, Jagannathan R, Ma T (2009) Jackknife estimator for tracking error variance of optimal portfolios. Manag Sci 55:990–1002

    Article  MATH  Google Scholar 

  • Benati S (2003) The optimal portfolio problem with coherent risk measure constraints. Eur J Oper Res 150:572–584

    Article  MathSciNet  MATH  Google Scholar 

  • Blattberg RC, Gonedes NJ (1974) A comparison of the stable and student distributions as statistical models for stock prices. J Bus 47:244–280

    Article  Google Scholar 

  • Bodnar T, Schmid W (2008) Estimation of optimal portfolio compositions for gaussian returns. Stat Decis 26:179–201

    Google Scholar 

  • Bodnar T, Schmid W (2009) Econometrical analysis of the sample efficient frontier. Eur J Finance 15:317–335

    Article  Google Scholar 

  • Bodnar T, Schmid W, Zabolotskyy T (2009) Statistical inference of the efficient frontier for dependent asset returns. Stat Pap 50:593–604

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar T, Schmid W, Zabolotskyy T (2012) Minimum VaR and minimum CVaR optimal portfolios: estimators, confidence regions, and tests. Stat Risk Model 29:281–314

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1981) Time series: data analysis and theory. Holden Day, San Francisco

    MATH  Google Scholar 

  • Britten-Jones M (1999) The sampling error in estimates of mean-variance efficient portfolio weights. J Finance 54:655–671

    Article  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods. Springer, New York

    Book  Google Scholar 

  • Campbell R, Huisman R, Koedijk K (2001) Optimal portfolio selection in a value-at-risk framework. J Banking Finance 25:1789–1804

    Article  Google Scholar 

  • Embrechts P, Klüppelberg S, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin

    Book  MATH  Google Scholar 

  • Fang K-T, Zhang Y-T (1990) Generalized multivariate analysis. Springer/Science Press, Berlin/Beijing

    MATH  Google Scholar 

  • Frahm G, Memmel C (2010) Dominating estimators for the global minimum variance portfolio. J Econ 159:289–302

    Article  MathSciNet  Google Scholar 

  • Gibbons MR, Ross SA, Shanken J (1989) A test of the efficiency of a given portfolio. Econometrica 57:1121–1152

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta AK, Varga T (1993) Elliptically contoured models in statistics. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Hannan EJ (1970) Multiple time series. Wiley, New York

    Book  MATH  Google Scholar 

  • Harvey CR, Liechty JC, Liechty MW, Müller P (2010) Portfolio selection with higher moments. Quant Finance 10:469–485

    Article  MathSciNet  MATH  Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer, New York

    Book  MATH  Google Scholar 

  • Jobson JD, Korkie B (1980) Estimation of Markowitz efficient portfolios. J Am Stat Assoc 75:544–554

    Article  MathSciNet  MATH  Google Scholar 

  • Jondeau E, Rockinger M (2006) Optimal portfolio allocation under higher moments. Eur Financ Manag 12:29–55

    Article  Google Scholar 

  • Krokhmal P (2007) Higher moment risk measures. Quant Finance 7:373–387

    Article  MathSciNet  MATH  Google Scholar 

  • Lim C, Sherali H, Uryasev S (2010) Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput Optim Appl 46:391–415

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus JR, Neudecker H (2007) Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • Mencia J, Sentana E (2009) Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation. J Econ 153:105–121

    Article  MathSciNet  Google Scholar 

  • Merton RC (1972) An analytical derivation of the efficient frontier. J Financ Quant Anal 7:1851–1872

    Article  Google Scholar 

  • Muirhead RJ (1982) Aspects of multivariate statistical theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Okhrin Y, Schmid W (2006) Distributional properties of optimal portfolio weights. J Econ 134:235–256

    Article  MathSciNet  Google Scholar 

  • Patton AJ (2004) On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. J Financ Econ 2:130–168

    Google Scholar 

  • Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–41

    Google Scholar 

  • Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distribution. J Banking Finance 26:1443–1471

    Article  Google Scholar 

  • Schmid W, Zabolotskyy T (2008) On the existence of unbiased estimators for the portfolio weights. Adv Stat Anal 92:29–34

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Editor and the two anonymous Referees for careful reading of the paper and for their suggestions which have improved an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schmid.

Appendix

Appendix

In this section, the proofs of the theorems are given. First, we formulate an important lemma which is used for proving Theorems 1 and 2. This lemma extends the asymptotic results of Bodnar et al. (2009) obtained for a gaussian process to an arbitrary strictly stationary process.

Lemma 1

Let \(\{ \mathbf{X }_t \}\) be a strictly stationary process with mean \({\varvec{\mu }}\) and cross-covariance matrix \({\varvec{\Gamma }}(h)\) at lag \(h\). We assume that the infinite sum in (14) converges. Then it follows that

$$\begin{aligned} \sqrt{n}\left( \left( \begin{array}{c} \hat{R}_{GMV} \\ \hat{V}_{GMV}\\ \hat{s}\end{array}\right) -\left( \begin{array}{c} R_{GMV} \\ V_{GMV}\\ s\end{array}\right) \right) \stackrel{d}{\rightarrow } \mathcal N \left( \left( \begin{array}{c} 0 \\ 0\\ 0\end{array}\right) ,\left( \begin{array}{ccc} \sigma ^2_1 &{} \sigma _{12} &{} \sigma _{13}\\ \sigma _{12} &{} \sigma ^2_2 &{} \sigma _{23} \\ \sigma _{13} &{} \sigma _{23} &{} \sigma ^2_3 \end{array}\right) \right) \!, \end{aligned}$$

where

$$\begin{aligned} \sigma ^2_1&= ((\partial R_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial R_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial R_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial R_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \,,\\ \sigma _{12}&= ((\partial R_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial R_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial V_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial V_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \,,\\ \sigma _{13}&= ((\partial R_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial R_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial s/\partial {\varvec{\mu }})^{\prime } \; (\partial s/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \,,\\ \sigma ^2_2&= ((\partial V_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial V_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial V_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial V_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \,,\\ \sigma _{23}&= ((\partial V_{GMV}/\partial {\varvec{\mu }})^{\prime } \; (\partial V_{GMV}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial s/\partial {\varvec{\mu }})^{\prime } \; (\partial s/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \,,\\ \sigma ^2_3&= ((\partial s/\partial {\varvec{\mu }})^{\prime } \; (\partial s/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime }) {\varvec{\Omega }}((\partial s/\partial {\varvec{\mu }})^{\prime } \; (\partial s/\partial ({\text{ vech}}{\varvec{\Gamma }}(0)))^{\prime })^\prime \end{aligned}$$

with

$$\begin{aligned} \frac{\partial R_{GMV}}{\partial {\varvec{\mu }}}&= \mathbf{w }_{GMV}\,, \quad \frac{\partial V_{GMV}}{\partial {\varvec{\mu }}}=\mathbf 0 \,,\quad \frac{\partial s}{\partial {\varvec{\mu }}}=2{\varvec{R}}{\varvec{\mu }}\,,\\ \frac{\partial R_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= V_{GMV}\frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big ((\mathbf{1 }\otimes {\varvec{\mu }})-R_{GMV}(\mathbf{1 }\otimes \mathbf{1 })\Big ),\\ \frac{\partial V_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= -V_{GMV}^2\frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}(\mathbf{1 }\otimes \mathbf{1 }),\\ \frac{\partial s}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big (({\varvec{\mu }}\otimes {\varvec{\mu }})+R_{GMV}^2(\mathbf{1 }\otimes \mathbf{1 })-2R_{GMV}(\mathbf{1 }\otimes {\varvec{\mu }})\Big ). \end{aligned}$$

Proof of Lemma 1

The proofs of Lemma 1 follows from the proof of Theorem 1 of Bodnar et al. (2009) and the statement that \({\hat{\varvec{\theta }}}=({\hat{\varvec{\mu }}}^\prime , {\text{ vech}}(\hat{\varvec{\Gamma }}(0))^\prime )^\prime \) is asymptotically normally distributed with mean vector \({\varvec{\theta }}\) and covariance matrix \({\varvec{\Omega }}/n\) (cf. (Brillinger (1981), Theorem 4.4.1)).

Proof of Theorem 1

It follows that

$$\begin{aligned} \mathbf{G }=\left( \begin{array}{cc} \left( \partial \mathbf{w }^{\prime }_{VaR}/\partial {\varvec{\mu }}\right) ^{\prime } &{} \left( \partial \mathbf{w }^{\prime }_{VaR}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0))\right) ^{\prime }\\ \left( \partial s/\partial {\varvec{\mu }}\right) ^{\prime } &{} \left( \partial s/\partial ({\text{ vech}}{\varvec{\Gamma }}(0))\right) ^{\prime }\\ \end{array} \right) \!, \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \mathbf{w }^{\prime }_{VaR}}{\partial {\varvec{\mu }}}&= \partial \mathbf{w }^{\prime }_{GMV}/\partial {\varvec{\mu }}+\partial \left( \frac{\sqrt{V_{GMV}}}{\sqrt{d_{1-\alpha }^2-s}}{\varvec{R}}{\varvec{\mu }}\right) ^{\prime }\Big /\partial {\varvec{\mu }}\\&= \mathbf 0 +\sqrt{V_{GMV}}\partial \left( \frac{{\varvec{\mu }}^{\prime }{\varvec{R}}}{\sqrt{d_{1-\alpha }^2-s}}\right) \Big /\partial {\varvec{\mu }}\\&= \sqrt{V_{GMV}}\frac{\sqrt{d_{1-\alpha }^2-s}\frac{\partial {\varvec{\mu }}^{\prime }{\varvec{R}}}{\partial {\varvec{\mu }}}- \frac{\partial \sqrt{d_{1-\alpha }^2-s}}{\partial {\varvec{\mu }}}{\varvec{\mu }}^{\prime }{\varvec{R}}}{d_{1-\alpha }^2-s}\\&= \frac{\sqrt{V_{GMV}}}{\sqrt{d_{1-\alpha }^2-s}}{\varvec{R}}+\frac{\sqrt{V_{GMV}}}{\left( d_{1-\alpha }^2-s\right) ^{3/2}}{\varvec{R}}{\varvec{\mu }}{\varvec{\mu }}^{\prime }{\varvec{R}}\end{aligned}$$

and

$$\begin{aligned} \frac{\partial s}{\partial {\varvec{\mu }}}&= \partial {\varvec{\mu }}^{\prime }{\varvec{R}}{\varvec{\mu }}/\partial {\varvec{\mu }}=2{\varvec{R}}{\varvec{\mu }}\,. \end{aligned}$$

Next, we calculate \(\partial s /\partial ({\text{ vech}}{\varvec{\Gamma }}(0))\) and \(\partial \mathbf{w }^{\prime }_{VaR}/\partial ({\text{ vech}}{\varvec{\Gamma }}(0))\). For this calculation the following identities are applied

$$\begin{aligned} \frac{\partial V_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= -\frac{\partial (\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 })}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\frac{1}{(\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 })^2}=-V_{GMV}^2\frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}(\mathbf{1 }\otimes \mathbf{1 }),\\ \frac{\partial \mathbf{w }^{\prime }_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= \frac{1}{\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }} \frac{\partial \mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}-\frac{1}{(\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 })^2} \frac{\partial \mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\\&= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big ( V_{GMV}(\mathbf{1 }\otimes \mathbf{I }_k)-V_{GMV}(\mathbf{1 }\otimes \mathbf{1 })\mathbf{w }^{\prime }_{GMV}\Big ),\\ \frac{\partial ({\varvec{\mu }}^{\prime }{\varvec{R}})}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}&= \frac{\partial {\varvec{\mu }}^{\prime }{\varvec{\Gamma }}(0)^{-1}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}- \frac{\partial \left( \frac{{\varvec{\mu }}^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}}{\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}\right) }{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}({\varvec{\mu }}\otimes \mathbf{I }_k)\\&-\frac{1}{\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}\frac{\partial {\varvec{\mu }}^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\\&\quad +\frac{{\varvec{\mu }}^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}{(\mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 })^2} \frac{\partial \mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)} \mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}\\&= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big (({\varvec{\mu }}\otimes \mathbf{I }_k) +R_{GMV}(\mathbf{1 }\otimes \mathbf{1 })\mathbf{w }_{GMV}^{\prime }\Big )\\&\quad -\frac{\partial {\varvec{\mu }}^{\prime }{\varvec{\Gamma }}(0)^{-1}\mathbf{1 }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\mathbf{w }_{GMV}^{\prime } -R_{GMV}\frac{\partial \mathbf{1 }^{\prime }{\varvec{\Gamma }}(0)^{-1}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\\&= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big (({\varvec{\mu }}\otimes \mathbf{I }_k) +R_{GMV}(\mathbf{1 }\otimes \mathbf{1 })\mathbf{w }_{GMV}^{\prime }\\&\quad -R_{GMV}(\mathbf{1 }\otimes \mathbf{I }_k)-(\mathbf{1 }\otimes {\varvec{\mu }})\mathbf{w }_{GMV}^{\prime }\Big )\,, \end{aligned}$$

Hence,

$$\begin{aligned} \frac{\partial s}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= \frac{\partial ({\varvec{\mu }}^{\prime }{\varvec{R}})}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}{\varvec{\mu }}\\&= \frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big (({\varvec{\mu }}\otimes {\varvec{\mu }}) +R_{GMV}^2(\mathbf{1 }\otimes \mathbf{1 })-2R_{GMV}(\mathbf{1 }\otimes {\varvec{\mu }})\Big )\,. \end{aligned}$$

and

$$\begin{aligned} \frac{\partial \mathbf{w }^{\prime }_{VaR}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}&= \frac{\partial \mathbf{w }^{\prime }_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}+\frac{\sqrt{d_{1-\alpha }^2-s}\frac{\partial \sqrt{V_{GMV}}{\varvec{\mu }}^{\prime }{\varvec{R}}}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}- \frac{\partial \sqrt{d_{1-\alpha }^2-s}}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}\sqrt{V_{GMV}}{\varvec{\mu }}^{\prime }{\varvec{R}}}{d_{1-\alpha }^2-s}\\&= \frac{\partial \mathbf{w }^{\prime }_{GMV}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}+\frac{\sqrt{V_{GMV}}}{\sqrt{d_{1-\alpha }^2-s}} \frac{\partial ({\varvec{\mu }}^{\prime }{\varvec{R}})}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}\\&+\frac{1}{2\sqrt{d_{1-\alpha }^2-s}\sqrt{V_{GMV}}} \frac{\partial V_{GMV}}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}{\varvec{\mu }}^{\prime }{\varvec{R}}\\&+\frac{\sqrt{V_{GMV}}}{2(d_{1-\alpha }^2-s)^{3/2}} \frac{\partial s}{\partial ({\text{ vech}}{\varvec{\Gamma }}(0))}{\varvec{\mu }}^{\prime }{\varvec{R}}. \end{aligned}$$

The substitution of the above calculated derivatives leads to

$$\begin{aligned}&\frac{\partial \mathbf{w }^{\prime }_{VaR}}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\\&\quad =\frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)}\Big ( V_{GMV}(\mathbf{1 }\!\otimes \!\mathbf{I }_k)\!-\!V_{GMV}(\mathbf{1 }\!\otimes \!\mathbf{1 })\mathbf{w }^{\prime }_{GMV}\!-\!\frac{V_{GMV}^{3/2}}{2\sqrt{d_{1-\alpha }^2\!-\!s}}(\mathbf{1 }\!\otimes \!\mathbf{1 }){\varvec{\mu }}^{\prime }{\varvec{R}}\\&\qquad +\frac{\sqrt{V_{GMV}}}{\sqrt{d_{1-\alpha }^2\!-\!s}}\left( ({\varvec{\mu }}\!\otimes \!\mathbf{I }_k) \!+\!R_{GMV}(\mathbf{1 }\!\otimes \!\mathbf{1 })\mathbf{w }_{GMV}^{\prime } \!-\!R_{GMV}(\mathbf{1 }\!\otimes \!\mathbf{I }_k)\!-\!(\mathbf{1 }\!\otimes \!{\varvec{\mu }})\mathbf{w }_{GMV}^{\prime }\right) \\&\qquad +\frac{\sqrt{V_{GMV}}}{2\left( d_{1-\alpha }^2\!-\!s\right) ^{3/2}} \left( ({\varvec{\mu }}\otimes {\varvec{\mu }}) \!+\!R_{GMV}^2(\mathbf{1 }\otimes \mathbf{1 })\!-\!2R_{GMV}(\mathbf{1 }\otimes {\varvec{\mu }})\right) {\varvec{\mu }}^{\prime }{\varvec{R}}\Big )\\&\quad \!=\!\frac{\partial ({\text{ vec}}{\varvec{\Gamma }}(0)^{-1})^{\prime }}{\partial {\text{ vech}}{\varvec{\Gamma }}(0)} \Big (a_1({\varvec{\mu }}\otimes \mathbf{I }_k)\!+\!a_2(\mathbf{1 }\otimes \mathbf{I }_k) \!+\!(\mathbf{1 }\otimes {\varvec{\mu }})\mathbf{v }_1^{\prime } \!+\!(\mathbf{1 }\otimes \mathbf{1 })\mathbf{v }_2^{\prime }\!+\!({\varvec{\mu }}\!\otimes \!{\varvec{\mu }})\mathbf{v }_3^{\prime }\Big ), \end{aligned}$$

where \(a_1,\,a_2,\,\mathbf{v }_1,\,\mathbf{v }_2\), and \(\mathbf{v }_3\) are given in (16).

It completes the proof of Theorem 1.

Proof of Corollary 1

We get

$$\begin{aligned}&\lim _{n\rightarrow \infty }F_{\sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) |0<\hat{s}<d^2_{\alpha }}(\mathbf y )\\&\quad = \lim _{n\rightarrow \infty }F_{\sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) |-\sqrt{n}s<\sqrt{n}(\hat{s}-s)<\sqrt{n}\left( d^2_{\alpha }-s\right) }(\mathbf y )\\&\quad =\lim _{n\rightarrow \infty }\frac{P\left( \left\{ \sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) \le \mathbf y \right\} \cap B_n\right) }{P(B_n)}\,, \end{aligned}$$

where \(B_n=\{ -\sqrt{n}s<\sqrt{n}(\hat{s}-s)<\sqrt{n}(d^2_{\alpha }-s)\}\) is an increasing sequence of intervals with \(\bigcup _{n=1}^\infty B_n =\Omega \). Moreover, it holds that

$$\begin{aligned} \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap B_n \subset \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap B_{n+1} \end{aligned}$$

and

$$\begin{aligned} \bigcup _{n=1}^\infty \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap B_n&= \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap \left( \bigcup _{n=1}^\infty B_n\right) \\&= \{\sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) \le \mathbf y \}. \end{aligned}$$

The application of the continuity property of the probability leads to \(\lim _{n \rightarrow \infty } P(B_n)=P\left( \bigcup _{n=1}^\infty B_n\right) =1\) and

$$\begin{aligned}&\lim _{n \rightarrow \infty } P\left( \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap B_n\right) \\&\quad = \lim _{n\rightarrow \infty }P\left( \bigcup _{n=1}^\infty \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \cap B_n\right) \\&\quad = \lim _{n\rightarrow \infty }P\left( \left\{ \sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) \le \mathbf y \right\} \right) , \end{aligned}$$

and consequently

$$\begin{aligned} \lim _{n\rightarrow \infty } F_{\sqrt{n}\left( \hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR}\right) |0<\hat{s}<d^2_{\alpha }}(\mathbf y )&= \lim _{n\rightarrow \infty } P\left( \left\{ \sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\le \mathbf y \right\} \right) , \end{aligned}$$

which is the marginal distribution of \(\sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\). Hence, \(\sqrt{n}(\hat{\mathbf{w }}_{VaR}-\mathbf{w }_{VaR})\) given \(0<\hat{s}<d^2_{\alpha }\) is asymptotically multivariate normally distributed with zero mean vector and covariance matrix \({\varvec{S}}_{11}\). The corollary is proved.

Proof of Theorem 2

  1. (a)

    Lemma 1 proves that

    $$\begin{aligned} \sqrt{n}\left( \left( \hat{R}_{GMV},\hat{V}_{GMV},\hat{s}\right) ^{\prime }-(R_{GMV},V_{GMV},s)^{\prime }\right) \stackrel{d}{\rightarrow }\mathcal N (\mathbf 0 ,{\varvec{\Omega }}_{EF}). \end{aligned}$$

    Thus,

    $$\begin{aligned} \sqrt{n}\left( \left( \hat{R}_{VaR},\hat{V}_{VaR},\hat{s}\right) ^\prime -(R_{VaR},V_{VaR},s)^\prime \right) \stackrel{d}{\rightarrow }\mathcal N (\mathbf 0 ,{\varvec{\Omega }}_{RVs}) \end{aligned}$$

    with \({\varvec{\Omega }}_{RVs}=\mathbf{G }_1 {\varvec{\Omega }}_{EF}\mathbf{G }_1^\prime \) where

    $$\begin{aligned} \mathbf{G }_1=\left( \begin{array}{ccc} \partial R_{VaR}/\partial R_{GMV}&{} \partial R_{VaR}/\partial V_{GMV} &{} \partial R_{VaR}/\partial s \\ \partial V_{VaR}/\partial R_{GMV} &{} \partial V_{VaR}/\partial V_{GMV} &{} \partial V_{VaR}/\partial s \\ \partial s/\partial R_{GMV} &{} \partial s/\partial V_{GMV} &{} \partial s/\partial s\\ \end{array} \right) \end{aligned}$$

    From (6) and (7) we get

    $$\begin{aligned} \mathbf{G }_1=\left( \begin{array}{ccc} 1 &{} \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}} \\ 0 &{} \frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s} &{} \frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV} \\ 0 &{} 0 &{} 1\\ \end{array} \right) \end{aligned}$$

    Hence,

    $$\begin{aligned} \mathbf{G }_1{\varvec{\Omega }}_{EF}\mathbf{G }_1^{\prime }&= \left( \begin{array}{ccc} 1 &{} \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}} \\ 0 &{} \frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s} &{} \frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV} \\ 0 &{} 0 &{} 1\\ \end{array} \right) \times \left( \begin{array}{ccc} \sigma _1^2 &{} \sigma _{12} &{} \sigma _{13} \\ \sigma _{12} &{} \sigma _2^2 &{} \sigma _{23} \\ \sigma _{13} &{} \sigma _{23} &{} \sigma _3^2 \\ \end{array} \right) \\&\times \left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s} &{} 0\\ \frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}} &{} \frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV} &{} 1 \\ \end{array} \right) =\left( \begin{array}{ccc} \tilde{\sigma }_1^2 &{} \tilde{\sigma }_{12} &{} \tilde{\sigma }_{13}\\ \tilde{\sigma }_{12} &{} \tilde{\sigma }_2^2 &{} \tilde{\sigma }_{23}\\ \tilde{\sigma }_{13} &{} \tilde{\sigma }_{23} &{} \tilde{\sigma }_3^2\\ \end{array} \right) \!, \end{aligned}$$

    where

    $$\begin{aligned} \tilde{\sigma }_1^2&= \sigma _1^2+2\sigma _{12}\frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}}\\&+2\sigma _{13}\frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}} \sqrt{V_{GMV}}+\sigma _2^2\frac{1}{4V_{GMV}}\frac{s^2}{d_{1-\alpha }^2-s}\\&+2\sigma _{23}\frac{s\left( 2d_{1-\alpha }^2-s\right) }{4\left( d_{1-\alpha }^2-s\right) ^2}+ \sigma _3^2\frac{\left( 2d_{1-\alpha }^2-s\right) ^2}{4\left( d_{1-\alpha }^2-s\right) ^3}V_{GMV}\,,\\ \tilde{\sigma }_{12}&= \sigma _{12}\frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s}+\sigma _2^2\frac{1}{2\sqrt{V_{GMV}}}\frac{sd_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^{3/2}}+\sigma _{13}\frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV} \\&+\sigma _{23}\left( \frac{d_{1-\alpha }^2\left( 2d_{1-\alpha }^2-s\right) }{2\left( d_{1-\alpha }^2-s\right) ^{5/2}}\sqrt{V_{GMV}}+\frac{sd_{1-\alpha }^2}{2\left( d_{1-\alpha }^2-s\right) ^{5/2}}\sqrt{V_{GMV}}\right) \\&+\sigma _3^2\frac{d_{1-\alpha }^2\left( 2d_{1-\alpha }^2-s\right) }{2\left( d_{1-\alpha }^2-s\right) ^{7/2}}V_{GMV}^{3/2}=\sigma _{12}\frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s}\\&+\sigma _2^2\frac{1}{2\sqrt{V_{GMV}}}\frac{sd_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^{3/2}}+ \sigma _{23}\frac{d_{1-\alpha }^4}{\left( d_{1-\alpha }^2-s\right) ^{5/2}}\sqrt{V_{GMV}}\\&+\sigma _{13}\frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV}+\sigma _3^2\frac{d_{1-\alpha }^2\left( 2d_{1-\alpha }^2-s\right) }{2\left( d_{1-\alpha }^2-s\right) ^{7/2}}V_{GMV}^{3/2}\,,\\ \tilde{\sigma }_{13}&= \sigma _{13}+\sigma _{23}\frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}}+ \sigma _3^2\frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}}\,,\\ \tilde{\sigma }_2^2&= \sigma _2^2\frac{d_{1-\alpha }^4}{\left( d_{1-\alpha }^2-s\right) ^2}+2\sigma _{23}\frac{d_{1-\alpha }^4}{\left( d_{1-\alpha }^2-s\right) ^3}V_{GMV}+ \sigma _3^2\frac{d_{1-\alpha }^4}{\left( d_{1-\alpha }^2-s\right) ^4}V_{GMV}^2\,,\\ \tilde{\sigma }_{23}&= \sigma _{23}\frac{d_{1-\alpha }^2}{d_{1-\alpha }^2-s}+ \sigma _3^2\frac{d_{1-\alpha }^2}{\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV}\,,\\ \tilde{\sigma }_3^2&= \sigma _3^2 \,. \end{aligned}$$
  1. (b)

    The proof of part (b) is similar to the proof of part (a). It holds that

    $$\begin{aligned}&\sqrt{n}\left( \left( \hat{R}_{VaR},\hat{M}_{VaR},\hat{s}\right) ^\prime -(R_{VaR},M_{VaR},s)^\prime \right) \stackrel{d}{\rightarrow }\mathcal N (\mathbf 0 ,{\varvec{\Omega }}_{RMs})\\&\quad =\mathcal N (\mathbf 0 ,\mathbf{G }_1 {\varvec{\Omega }}_{EF}\mathbf{G }_1^\prime )\,, \end{aligned}$$

    where

    $$\begin{aligned} \mathbf{G }_2&= \left( \begin{array}{ccc} \partial R_{VaR}/\partial R_{GMV}&{} \partial R_{VaR}/\partial V_{GMV} &{} \partial R_{VaR}/\partial s \\ \partial M_{VaR}/\partial R_{GMV} &{} \partial M_{VaR}/\partial V_{GMV} &{} \partial M_{VaR}/\partial s \\ \partial s/\partial R_{GMV} &{} \partial s/\partial V_{GMV} &{} \partial s/\partial s\\ \end{array} \right) \\&= \left( \begin{array}{ccc} 1 &{} \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}} \\ -1 &{} \frac{1}{2\sqrt{V_{GMV}}}\sqrt{d_{1-\alpha }^2-s} &{} -\frac{1}{2\sqrt{d_{1-\alpha }^2-s}}\sqrt{V_{GMV}} \\ 0 &{} 0 &{} 1\\ \end{array} \right) \end{aligned}$$

    Hence,

    $$\begin{aligned} \mathbf{G }_2{\varvec{\Omega }}_{EF}\mathbf{G }_2^{\prime }&= \left( \begin{array}{ccc} 1 &{} \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}} \\ -1 &{} \frac{1}{2\sqrt{V_{GMV}}}\sqrt{d_{1-\alpha }^2-s} &{} -\frac{1}{2\sqrt{d_{1-\alpha }^2-s}}\sqrt{V_{GMV}} \\ 0 &{} 0 &{} 1\\ \end{array} \right) \times \left( \begin{array}{ccc} \sigma _1^2 &{} \sigma _{12} &{} \sigma _{13} \\ \sigma _{12} &{} \sigma _2^2 &{} \sigma _{23} \\ \sigma _{13} &{} \sigma _{23} &{} \sigma _3^2 \\ \end{array} \right) \\&\times \left( \begin{array}{ccc} 1 &{} -1 &{} 0\\ \frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}} &{} \frac{1}{2\sqrt{V_{GMV}}}\sqrt{d_{1-\alpha }^2-s}&{}0\\ \frac{2d_{1-\alpha }^2-s}{2(d_{1-\alpha }^2-s)^{3/2}}\sqrt{V_{GMV}} &{} -\frac{1}{2\sqrt{d_{1-\alpha }^2-s}}\sqrt{V_{GMV}}&{}1\\ \end{array} \right) = \left( \begin{array}{ccc} \breve{\sigma }_1^2 &{} \breve{\sigma }_{12} &{} \breve{\sigma }_{13}\\ \breve{\sigma }_{12} &{} \breve{\sigma }_2^2 &{} \breve{\sigma }_{23}\\ \breve{\sigma }_{13} &{} \breve{\sigma }_{23} &{} \breve{\sigma }_3^2\\ \end{array} \right) \!, \end{aligned}$$

    where

    $$\begin{aligned} \breve{\sigma }_1^2&= \tilde{\sigma }_1^2=\sigma _1^2+2\sigma _{12}\frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}}+2\sigma _{13}\frac{2d_{1-\alpha }^2-s}{2(d_{1-\alpha }^2-s)^{3/2}} \sqrt{V_{GMV}}\\&+\sigma _2^2\frac{1}{4V_{GMV}}\frac{s^2}{d_{1-\alpha }^2-s}+2\sigma _{23}\frac{s\left( 2d_{1-\alpha }^2-s\right) }{4(d_{1-\alpha }^2-s)^2}+ \sigma _3^2\frac{\left( 2d_{1-\alpha }^2-s\right) ^2}{4\left( d_{1-\alpha }^2-s\right) ^3}V_{GMV}\,,\\ \breve{\sigma }_{12}&= -\sigma _1^2+\sigma _2^2\frac{s}{4V_{GMV}}-\sigma _3^2\frac{2d_{1-\alpha }^2-s}{4\left( d_{1-\alpha }^2-s\right) ^2}V_{GMV} +\sigma _{12}\frac{1}{2\sqrt{V_{GMV}}}\frac{d_{1-\alpha }^2-2s}{\sqrt{d_{1-\alpha }^2-s}}\\&-\sigma _{13}\frac{3d_{1-\alpha }^2-2s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}}+\sigma _{23}\frac{1}{2}\,,\\ \breve{\sigma }_{13}&= \sigma _{13}+\sigma _{23}\frac{1}{2\sqrt{V_{GMV}}}\frac{s}{\sqrt{d_{1-\alpha }^2-s}}+ \sigma _3^2\frac{2d_{1-\alpha }^2-s}{2\left( d_{1-\alpha }^2-s\right) ^{3/2}}\sqrt{V_{GMV}}\,,\\ \breve{\sigma }_2^2&= \sigma _1^2-2\sigma _{12}\frac{1}{2\sqrt{V_{GMV}}}\sqrt{d_{1-\alpha }^2-s}+ 2\sigma _{13}\frac{1}{2\sqrt{d_{1-\alpha }^2-s}}\sqrt{V_{GMV}}\\&+\sigma _2^2\frac{1}{4V_{GMV}}\left( d_{1-\alpha }^2-s\right) -2\sigma _{23}\frac{1}{4}+\sigma _3^2\frac{1}{4\left( d_{1-\alpha }^2-s\right) }V_{GMV}\,,\\&-2\sigma _{23}\frac{1}{4}+\sigma _3^2\frac{1}{4\left( d_{1-\alpha }^2-s\right) }V_{GMV}\,,\\ \breve{\sigma }_{23}&= -\sigma _{13}+\sigma _{23}\frac{1}{2\sqrt{V_{GMV}}}\sqrt{d_{1-\alpha }^2-s}-\sigma _3^2\frac{1}{2\sqrt{d_{1-\alpha }^2-s}}\sqrt{V_{GMV}}\,,\\ \breve{\sigma }_3^2&= \sigma _3^2\,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodnar, T., Schmid, W. & Zabolotskyy, T. Asymptotic behavior of the estimated weights and of the estimated performance measures of the minimum VaR and the minimum CVaR optimal portfolios for dependent data. Metrika 76, 1105–1134 (2013). https://doi.org/10.1007/s00184-013-0432-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-013-0432-1

Keywords

Navigation