Skip to main content
Log in

Recursive non-parametric kernel classification rule estimation for independent functional data

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper we propose an automatic selection of the bandwidth of the recursive non-parametric estimation of the kernel classification rule function defined by the stochastic approximation algorithm, when the explanatory data are curves and the response is categorical. We established a central limit theorem for our proposed recursive estimators, the proposed recursive estimators will be very competitive to the non-recursive one in terms of estimation error but much better in terms of computational costs. The proposed estimators are used first on simulated waveform curves and then on real phoneme data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham C, Biau G, Cadre B (2006) On the kernel rule for function classification. Ann Inst Stat Math 58:619–633

    Article  MathSciNet  Google Scholar 

  • Biau G, Cerou F, Guyader A (2010) Rates of convergence of the functional k-nearest neighbor estimate. IEEE Trans Inf Theory 56:2034–2040

    Article  MathSciNet  Google Scholar 

  • Bojanic R, Seneta E (1973) A unified theory of regularly varying sequences. Math Z 134:91–106

    Article  MathSciNet  Google Scholar 

  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont

    MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45:11–22

    Article  MathSciNet  Google Scholar 

  • Cai TT, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Article  MathSciNet  Google Scholar 

  • Delaigle A, Gijbels I (2004) Practical bandwidth selection in deconvolution kernel density estimation. Comput Stat Data Anal 45:249–267

    Article  MathSciNet  Google Scholar 

  • Febrero-Bande M, Oviedo de la Fuente M (2012) Statistical computing in functional data analysis: the R package fda.usc. J Stat Softw 51:1–28

    Article  Google Scholar 

  • Febrero-Bande M, Oviedo de la Fuente M, Galeano P, Nieto A, Garcia-Portugue E (2019) fda.usc: functional data analysis and utilities for statistical computing. https://CRAN.R-project.org/package=fda.usc. R package version 1.5.0

  • Ferraty F, Vieu P (2002) The functional non-parametric model and application to spectrometric data. Comput Stat 17:545–564

    Article  Google Scholar 

  • Ferraty F, Vieu P (2003) Curves discrimination: a non-parametric function approach. Comput Stat Data Anal 44:161–173

    Article  Google Scholar 

  • Ferraty F, Vieu P (2004) Non-parametric models for functional data, with application in regression, time-series prediction and curve discrimination. J Nonparametr Stat 16:111–125

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Non-parametric functional data analysis: theory and practice. Springer series in statistics. Springer, NewYork

    MATH  Google Scholar 

  • Ferraty F, Mas A, Vieu P (2007) non-parametric regression on functional data: inference and practical aspects. Aust N Z J Stat 49:267–286

    Article  MathSciNet  Google Scholar 

  • Ferraty F Van, Keilegom I, Vieu P (2010) On the validity of the bootstrap in non-parametric functional regression. Scand J Stat 37:286–306

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Keilegom IV, Vieu P (2012) Regression when both response and predictor are functions. J Multivar Anal 109:10–28

    Article  MathSciNet  Google Scholar 

  • Galambos J, Seneta E (1973) Regularly varying sequences. Proc Am Math Soc 41:110–116

    Article  MathSciNet  Google Scholar 

  • Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35:70–91

    Article  MathSciNet  Google Scholar 

  • Hall P, Poskitt D, Presnell B (2001) A functional data-analytic approach to signal discrimination. Technometrics 43:1–9

    Article  MathSciNet  Google Scholar 

  • Hastie T, Buja A, Tibshirani R (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  MathSciNet  Google Scholar 

  • Hastie T, Buja A, Tibshirani R (1995) Penalized discriminant analysis. Ann Stat 23:73–102

    Article  MathSciNet  Google Scholar 

  • Jmaei A, Slaoui Y, Dellagi W (2017) Recursive distribution estimators defined by stochastic approximation method using Bernstein polynomials. J Nonparametr Stat 29:792–805

    Article  MathSciNet  Google Scholar 

  • Kara LZ, Laksaci A, Rachdi M, Vieu P (2017) Data-driven \(k\)NN estimation in nonparametric functional data analysis. J Multivar Anal 153:176–188

    Article  Google Scholar 

  • Marx B, Eilers P (1999) Generalized linear regression on sampled signals and curves: a P-spline approach. Technometrics 41:1–13

    Article  Google Scholar 

  • Mokkadem A, Pelletier M (2007) A companion for the Kiefer–Wolfowitz–Blum stochastic approximation algorithm. Ann Stat 35:1749–1772

    Article  MathSciNet  Google Scholar 

  • Mokkadem A, Pelletier M, Slaoui Y (2009a) The stochastic approximation method for the estimation of a multivariate probability density. J Stat Plan Inference 139:2459–2478

    Article  MathSciNet  Google Scholar 

  • Mokkadem A, Pelletier M, Slaoui Y (2009b) Revisiting Révész’s stochastic approximation method for the estimation of a regression function, ALEA Lat. Am J Probab Math Stat 6:63–114

    MathSciNet  MATH  Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 10:186–190

    Article  Google Scholar 

  • Preda C (2007) Regression models for functional data by reproducing kernel Hilbert spaces methods. J Stat Plan Inference 137:829–840

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis: methods and case studies. Springer, New York

    Book  Google Scholar 

  • Raña P, Aneiros G, Vilar J, Vieu P (2016) Bootstrap confidence intervals in functional nonparametric regression under dependence. Electron J Stat 10:1973–1999

    Article  MathSciNet  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Slaoui Y (2016) Optimal bandwidth selection for semi-recursive kernel regression estimators. Stat Interface 9:375–388

    Article  MathSciNet  Google Scholar 

  • Slaoui Y (2019) Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data. J Multivar Anal 173:494–511

    Article  MathSciNet  Google Scholar 

  • Slaoui Y, Jmaei A (2019) Recursive density estimators based on Robbins–Monro’s scheme and using Bernstein polynomials. Stat Interface 12:439–455

    Article  MathSciNet  Google Scholar 

  • Slaoui Y (2020) Recursive non-parametric regression estimation for independent functional data. Stat Sin 30:417–437

    MATH  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhya A 26:359–372

    MathSciNet  MATH  Google Scholar 

  • Younso A (2017) On non-parametric classification for weakly dependent functional processes. ESAIM Probab Stat 21:452–466

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Editor and two anonymous referees for their thoughtful comments and remarks, which helped us to focus on improving the original version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousri Slaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

Throughout this section we use the following notation:

$$\begin{aligned}&Q_n=\prod _{j=1}^{n}\left( 1-\gamma _j\right) ,\nonumber \\&a_{n,g}\left( \chi ,h\right) =Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}\mathbb {1}_{\left\{ Y_k=g\right\} }K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) ,\nonumber \\&f_n\left( \chi ,h\right) =Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) ,\nonumber \\&a_g\left( \chi \right) :={\mathbb {P}}\left[ Y=g \cap \mathcal {X}=\chi \right] ,\nonumber \\&f\left( \chi \right) :={\mathbb {P}}\left[ \mathcal {X}=\chi \right] . \end{aligned}$$
(18)

Moreover, we let,

$$\begin{aligned} {\widehat{a}}_n^*\left( \chi ,h\right)= & {} \frac{Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k} \right) \mathbb {1}_{\left\{ Y_k^*=g\right\} }}{Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}{\mathbb {E}}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] },\\ {\widehat{f}}_n^*\left( \chi ,h\right)= & {} \frac{Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k} \right) }{Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}{\mathbb {E}} \left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] }. \end{aligned}$$

Before giving the outlines of the proofs, we state the following technical lemma, which is proved in Mokkadem et al. (2009a), and which is widely applied throughout the proofs.

Lemma 1

Let \(\left( v_n\right) \in \mathcal {GS}\left( v^*\right) \), \(\left( \gamma _n\right) \in \mathcal {GS}\left( -\alpha \right) \), and \(m>0\) such that \(m-v^*\xi >0\) where \(\xi \) is defined in (8). We have

$$\begin{aligned} \lim _{n \rightarrow +\infty }v_nQ_n^{m}\sum _{k=1}^nQ_k^{-m}\frac{\gamma _k}{v_k} =\frac{1}{m-v^*\xi }. \end{aligned}$$

Moreover, for all positive sequence \(\left( b_n\right) \) such that \(\lim _{n \rightarrow +\infty }b_n=0\), and all \(\delta \in {\mathbb {R}}\),

$$\begin{aligned} \lim _{n \rightarrow +\infty }v_nQ_n^{m}\left[ \sum _{k=1}^n Q_k^{-m} \frac{\gamma _k}{v_k}b_k+\delta \right] =0. \end{aligned}$$

Let us underline that the application of Lemma 1 which requires Assumption (A4)(iv) on the limit of \((n\gamma _n)\) as n goes to infinity.

Our proofs are organized as follows. Proposition 1, Theorem 1 and Theorem 2 are proved respectively, in Appendices 12 and 3 . In all our proofs C and M stand for any arbitrary positive constants.

1.1 Proof of Proposition 1

Let us first use the following decomposition

$$\begin{aligned}&{\mathbb {E}}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) \nonumber \\&\quad = \frac{{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] }{{\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] }-p_g\left( \chi \right) -\frac{{\mathbb {E}}\left\{ a_{n,g}\left( \chi ,h\right) \left[ f_n\left( \chi ,h\right) -{\mathbb {E}}\left( f_n\left( \chi ,h\right) \right) \right] \right\} }{\left\{ {\mathbb {E}} \left[ f_n\left( \chi ,h\right) \right] \right\} ^2}\nonumber \\&\qquad +\frac{{\mathbb {E}}\left\{ {\widehat{p}}_{n,g}\left( \chi ,h\right) \left[ f_n\left( \chi ,h\right) -{\mathbb {E}}\left( f_n\left( \chi ,h\right) \right) \right] ^2\right\} }{\left\{ {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] \right\} ^2}. \end{aligned}$$
(19)

Computing the expectation of \(f_n\left( \chi ,h\right) \)

First, we have

$$\begin{aligned} {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right]= & {} Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}{\mathbb {E}}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \nonumber \\= & {} Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}\left\{ \int _0^1K\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) } \left( u\right) \right\} \nonumber \\= & {} Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}\left\{ F\left( h_k\right) \left[ K\left( 1\right) -\int _0^1K^{\prime }\left( u\right) \tau _{h_k} \left( u\right) du\right] \right\} . \end{aligned}$$

Then, since we have \(\lim _{n\rightarrow \infty }\left( n\gamma _n\right) >\mathcal {F}_a\), the application of Lemma 1 gives

$$\begin{aligned} {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] =\frac{1}{1-\left( \mathcal {F}_a -a\right) \xi }M_{\chi , 1}h_n^{-1}F\left( h_n\right) \left[ 1+o\left( 1\right) \right] . \end{aligned}$$
(20)

Computing the expectation of \(a_{n,g}\left( \chi ,h\right) \)

Now, we have

$$\begin{aligned} {\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right]= & {} Q_n \sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}{\mathbb {E}} \left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} } -p_g\left( \chi \right) \right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&+p_g\left( \chi \right) {\mathbb {E}} \left[ f_n\left( \chi ,h\right) \right] . \end{aligned}$$

Taylor’s expansion of \(\phi \) around 0 ensures that

$$\begin{aligned}&{\mathbb {E}}\left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} }-p_g\left( \chi \right) \right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&\quad ={\mathbb {E}}\left[ \left( p_g\left( \mathcal {X}_k\right) -p_g\left( \chi \right) \right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&\quad ={\mathbb {E}}\left[ \phi \left( \left\| \chi -\mathcal {X}_k\right\| \right) K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&\quad =\int _0^1\phi \left( h_ku\right) K\left( u\right) d{\mathbb {P}}^{ \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \\&\quad =h_k\phi ^{\prime }\left( 0\right) \int _0^1uK\left( u\right) d{\mathbb {P}}^{ \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) +o\left( h_k\right) . \end{aligned}$$

Moreover, it follows from the proof of Lemma 2 in Ferraty et al. (2007), the assumption \(\left( A2\right) \) and Fubini’s Theorem

$$\begin{aligned} \int _0^1uK\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) =F\left( h_k\right) \left[ K\left( 1\right) -\int _0^1\left( uK\left( u\right) \right) ^{\prime } \tau _{h_k}\left( u\right) du\right] , \end{aligned}$$

Then, since we have \(\lim _{n\rightarrow \infty }\left( n\gamma _n\right) >\mathcal {F}_a\), the application of Lemma 1 gives

$$\begin{aligned} {\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right]= & {} \left\{ \frac{1}{1-\mathcal {F}_a\xi }\phi ^{\prime }\left( 0\right) M_{\chi , 0} +p_g\left( \chi \right) \frac{1}{1-\left( \mathcal {F}_a-a\right) \xi }M_{\chi , 1}h_n^{-1} \right\} \nonumber \\&F\left( h_n\right) \left[ 1+o\left( 1\right) \right] . \end{aligned}$$
(21)

The combination of (20) and (21) gives

$$\begin{aligned} \frac{{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] }{{\mathbb {E}} \left[ f_n\left( \chi ,h\right) \right] } -p_g\left( \chi \right)= & {} h_n\phi ^{\prime }\left( 0\right) \frac{1-\left( \mathcal {F}_a-a\right) \xi }{1 -\mathcal {F}_a\xi }\frac{M_{\chi , 0}}{M_{\chi , 1}}\left[ 1+o(1)\right] . \end{aligned}$$
(22)

Computing the variance of \(f_n\left( \chi ,h\right) \)

First, we have

$$\begin{aligned} Var\left[ f_n\left( \chi ,h\right) \right]= & {} Q_n^2\sum _{k=1}^nQ_k^{-2} \gamma _k^2h_k^{-2}Var\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] ,\\= & {} Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2} \left\{ {\mathbb {E}}\left[ K^2\left( \frac{\left\| \chi -\mathcal {X}_k \right\| }{h_k}\right) \right] -{\mathbb {E}}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] ^2\right\} \\= & {} Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2} \left\{ \int _0^1K^2\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \right. \\&\left. -\left[ \int _0^1K \left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \right] ^2\right\} \\= & {} Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}F\left( h_k\right) \left\{ \left[ K^2\left( 1\right) -\int _0^1\left( K^2\left( u\right) \right) ^{\prime } \tau _{h_k}\left( u\right) du\right] \right. \\&\left. -F\left( h_k\right) \left[ K\left( 1\right) -\int _0^1K^{\prime } \left( u\right) \tau _{h_k}\left( u\right) du\right] ^2\right\} . \end{aligned}$$

Then, since we have \(\lim _{n\rightarrow \infty }\left( n\gamma _n\right) >\left( \mathcal {F}_a+\alpha \right) /2-a\), the application of Lemma 1 gives

$$\begin{aligned} Var\left[ f_n\left( \chi ,h\right) \right]= & {} \frac{1}{2-\left( \mathcal {F}_a+\alpha -2a\right) \xi }\frac{\gamma _n}{h_n^{2}}F\left( h_n\right) M_{\chi , 2}\left[ 1+o\left( 1\right) \right] . \end{aligned}$$
(23)

Computing the variance of \(a_{n,g}\left( \chi ,h\right) \)

First, we have

$$\begin{aligned}&Var\left[ a_{n,g}\left( \chi ,h\right) \right] =Q_n^2\sum _{k=1}^nQ_k^{-2} \gamma _k^2h_k^{-2}Var\left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] ,\nonumber \\&\quad =Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}\left\{ {\mathbb {E}} \left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] -{\mathbb {E}} \left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] ^2\right\} \nonumber \\&\quad =Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}\left\{ {\mathbb {E}} \left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} }-p_g\left( \chi \right) \right) K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] +p_g\left( \chi \right) {\mathbb {E}}\left[ K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right. \nonumber \\&\quad \left. -\left( {\mathbb {E}}\left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} } -p_g\left( \chi \right) \right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] +p_g\left( \chi \right) {\mathbb {E}} \left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right) ^2\right\} \nonumber \\&\quad =Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}\left\{ {\mathbb {E}} \left[ \phi \left( \left\| \chi -\mathcal {X}_k\right\| \right) K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] +p_g\left( \chi \right) {\mathbb {E}} \left[ K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right. \nonumber \\&\quad \left. -\left( {\mathbb {E}}\left[ \phi \left( \left\| \chi -\mathcal {X}_k\right\| \right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] +p_g\left( \chi \right) {\mathbb {E}}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right) ^2\right\} . \end{aligned}$$

Taylor’s expansion of \(\phi \) around 0 ensures that, for \(i\in \left\{ 1,2\right\} \)

$$\begin{aligned}&{\mathbb {E}}\left[ \phi \left( \left\| \chi -\mathcal {X}_k\right\| \right) K^{i} \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&\quad =\int _0^1\phi \left( h_ku\right) K^{i} \left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \nonumber \\&\quad =h_k\phi ^{\prime }\left( 0\right) \int _0^1uK^{i}\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) } \left( u\right) +o\left( h_k\right) \nonumber \\&\quad =h_k\phi ^{\prime }\left( 0\right) F\left( h_k\right) \left[ K^i\left( 1\right) -\int _0^1\left( uK^i\left( u\right) \right) ^{\prime }\tau _{h_k}\left( u\right) du\right] . \end{aligned}$$

Moreover, we have for \(i\in \left\{ 1,2\right\} \)

$$\begin{aligned} {\mathbb {E}}\left[ K^i\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right]= & {} \int _0^1K^i\left( u\right) d{\mathbb {P}}^{ \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \\= & {} F\left( h_k\right) \left[ K^i\left( 1\right) -\int _0^1\left( K^i \left( u\right) \right) ^{\prime }\tau _{h_k}\left( u\right) du\right] \end{aligned}$$

Then, since we have \(\lim _{n\rightarrow \infty }\left( n\gamma _n\right) >\left( \mathcal {F}_a+\alpha -a\right) /2\), the application of Lemma 1 gives

$$\begin{aligned} Var\left[ a_{n,g}\left( \chi ,h\right) \right]= & {} \frac{1}{2-\left( \mathcal {F}_a +\alpha -2a\right) \xi }\frac{\gamma _n}{h_n^{2}}F\left( h_n\right) M_{\chi , 2}\nonumber \\&\left\{ 1-\frac{2-\left( \mathcal {F}_a+\alpha -2a\right) \xi }{2-\left( 2\mathcal {F}_a+\alpha -2a\right) \xi }F\left( h_n\right) p_g^2 \left( \chi ,h\right) \frac{M_{\chi , 1}^2}{M_{\chi , 2}}\right\} \left[ 1+o\left( 1\right) \right] .\nonumber \\ \end{aligned}$$
(24)

Computing the covariance between \(a_{n,g}\left( \chi ,h\right) \) and \(f_n\left( \chi ,h\right) \)

First, we have

$$\begin{aligned} {\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) f_n\left( \chi ,h\right) \right]= & {} Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}{\mathbb {E}} \left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \nonumber \\&+Q_n^2\sum _{\begin{array}{c} k,k^{\prime }=1\\ k\not =k^{\prime } \end{array}}^nQ_k^{-1} \Pi _{k^{\prime }}^{-1}\gamma _k\gamma _{k^{\prime }}h_k^{-1}{\mathbb {E}} \left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K\left( \frac{\left\| \chi -\mathcal {X}_k \right\| }{h_k}\right) \right] \nonumber \\&\times h_{k^{\prime }}^{-1}{\mathbb {E}}\left[ \mathbb {1}_{\left\{ Y_k^{\prime } =g\right\} }K\left( \frac{\left\| \chi -\mathcal {X}_{k^{\prime }}\right\| }{h_{k^{\prime }}}\right) \right] . \end{aligned}$$
(25)

Moreover, we have

$$\begin{aligned} {\mathbb {E}}\left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K^2 \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right]= & {} {\mathbb {E}}\left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} } -p_g\left( \chi \right) \right) K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\&+p_g\left( \chi \right) {\mathbb {E}}\left[ K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] . \end{aligned}$$

Taylor’s expansion of \(\phi \) around 0 ensures that

$$\begin{aligned} {\mathbb {E}}\left[ \left( \mathbb {1}_{\left\{ Y_k=g\right\} } -p_g\left( \chi \right) \right) K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right]= & {} {\mathbb {E}}\left[ \left( p_g\left( X_k\right) -p_g\left( \chi \right) \right) K^2 \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\= & {} {\mathbb {E}}\left[ \phi \left( \left\| \chi -\mathcal {X}_k\right\| \right) K^2 \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\= & {} \int _0^1\phi \left( h_ku\right) K^2\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) \\= & {} h_k\phi ^{\prime }\left( 0\right) \int _0^1uK^2\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) } \left( u\right) +o\left( h_k\right) . \end{aligned}$$

Moreover, it follows from the proof of Lemma 2 in Ferraty et al. (2007), the assumption \(\left( A2\right) \) and Fubini’s Theorem

$$\begin{aligned} \int _0^1uK^2\left( u\right) d{\mathbb {P}}^{\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }\left( u\right) =F\left( h_k\right) \left[ K^2\left( 1\right) -\int _0^1\left( uK^2\left( u\right) \right) ^{\prime } \tau _{h_k}\left( u\right) du\right] , \end{aligned}$$

Then, we get

$$\begin{aligned} {\mathbb {E}}\left[ \mathbb {1}_{\left\{ Y_k=g\right\} }K^2 \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right]= & {} h_k \phi ^{\prime }\left( 0\right) F\left( h_k\right) \left[ K^2\left( 1\right) -\int _0^1\left( uK^2\left( u\right) \right) ^{\prime }\tau _{h_k}\left( u\right) du \right] \nonumber \\&+p_g\left( \chi \right) F\left( h_k\right) \left[ K^2\left( 1\right) -\int _0^1\left( K^2\left( u\right) \right) ^{\prime }\tau _{h_k}\left( u\right) du\right] .\nonumber \\ \end{aligned}$$
(26)

Then, in view of (25), (26) and since we have \(\lim _{n\rightarrow \infty }\left( n\gamma _n\right) >\left( \mathcal {F}_a+\alpha -a\right) /2\), the application of Lemma 1 gives

$$\begin{aligned}&Cov\left( a_{n,g}\left( \chi ,h\right) ,f_n\left( \chi ,h\right) \right) \nonumber \\&\quad =\frac{1}{2-\left( \mathcal {F}_a+\alpha -a\right) \xi }\frac{\gamma _n}{h_n^2}F\left( h_n\right) M_{\chi , 2}p_g\left( \chi \right) \left[ 1+o\left( 1\right) \right] . \end{aligned}$$
(27)

Computing the expectation of \({\widehat{p}}_{n,g}\left( \chi ,h\right) \)

First, it follows from (23) and (24), that

$$\begin{aligned}&{\mathbb {E}}\left\{ a_{n,g}\left( \chi ,h\right) \left[ f_n\left( \chi ,h\right) -{\mathbb {E}}\left( f_n\left( \chi ,h\right) \right) \right] \right\} =O\left( \frac{\gamma _n}{F\left( h_n\right) }\right) . \end{aligned}$$
(28)
$$\begin{aligned}&{\mathbb {E}}\left\{ {\widehat{p}}_{n,g}\left( \chi ,h\right) \left[ f_n\left( \chi ,h\right) -{\mathbb {E}}\left( f_n\left( \chi ,h\right) \right) \right] ^2\right\} =O\left( \frac{\gamma _n}{F\left( h_n\right) }\right) . \end{aligned}$$
(29)

Then (9) follows from (19), (22), (28) and (29).

Computing the variance of \({\widehat{p}}_{n,g}\left( \chi ,h\right) \)

We have

$$\begin{aligned}&Var\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] \nonumber \\&\quad \simeq \frac{Var\left[ a_{n,g}\left( \chi ,h\right) \right] }{\left\{ {\mathbb {E}} \left[ f_n\left( \chi ,h\right) \right] \right\} ^2}-4\frac{{\mathbb {E}} \left[ a_{n,g}\left( \chi ,h\right) \right] Cov\left( a_{n,g}\left( \chi ,h\right) ,f_n \left( \chi ,h\right) \right) }{\left\{ {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] \right\} ^3}\nonumber \\&\qquad +3Var\left[ f_n\left( \chi ,h\right) \right] \frac{\left\{ {\mathbb {E}} \left[ a_{n,g}\left( \chi ,h\right) \right] \right\} ^2}{\left\{ {\mathbb {E}} \left[ f_n\left( \chi ,h\right) \right] \right\} ^4}. \end{aligned}$$
(30)

Then, the combination of (20), (21), (23), (24), (27) and (30), ensures that

$$\begin{aligned} Var\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right]= & {} \frac{\left( 1 -\left( \mathcal {F}_a-a\right) \xi \right) ^2}{\left( 2-\left( \mathcal {F}_a +\alpha -2a\right) \xi \right) }\frac{M_{\chi , 2}}{M_{\chi , 1}^2}\frac{\gamma _n}{F\left( h_n\right) }\\&\left\{ 1-\frac{2-\left( \mathcal {F}_a+\alpha -2a\right) \xi }{2 -\left( 2\mathcal {F}_a+\alpha -2a\right) \xi }F\left( h_n\right) p_g^2 \left( \chi ,h\right) \frac{M_{\chi , 1}^2}{M_{\chi , 2}}\right\} \left[ 1+o\left( 1\right) \right] . \end{aligned}$$

1.2 Proof of Theorem 1

Let us at first assume that, if \(a\ge \left( \alpha +\mathcal {F}_a\right) /2\), then

$$\begin{aligned} \sqrt{\gamma _n^{-1} F\left( h_n\right) }\left( {\widehat{p}}_{n,g}\left( \chi \right) -{\mathbb {E}}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] \right) {\mathop {\rightarrow }\limits ^{\mathcal {D}}}\mathcal {N}\left( 0, \frac{\left( 1-\left( \mathcal {F}_a-a\right) \xi \right) ^2}{\left( 2-\left( \mathcal {F}_a+\alpha -2a\right) \xi \right) }\frac{M_{\chi , 2}}{M_{\chi , 1}^2}\right) .\nonumber \\ \end{aligned}$$
(31)

In the case when \(\gamma _n^{-1}h_n^2F\left( h_n\right) \rightarrow c\), Part 1 of Theorem 1 follows from the combination of (9) and (31). In the case \(\gamma _n^{-1}h_n^2F\left( h_n\right) \rightarrow \infty \), (11) implies that

$$\begin{aligned} h_n^{-2}\left( {\widehat{p}}_{n,g}\left( \chi ,h\right) -{\mathbb {E}} \left( {\widehat{p}}_{n,g}\left( \chi ,h\right) \right) \right) {\mathop {\rightarrow }\limits ^{{\mathbb {P}}}}0, \end{aligned}$$

and the application of (9) gives Part 2 of Theorem 1.

We now prove (31). In view of (18), we have

$$\begin{aligned} {\widehat{p}}_{n,g}\left( \chi ,h\right) -{\mathbb {E}} \left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right]= & {} \frac{a_{n,g}\left( \chi ,h\right) }{f_n\left( \chi ,h\right) } -\frac{{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] }{{\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] } +o\left( \sqrt{\frac{\gamma _n}{F\left( h_n\right) }}\right) . \end{aligned}$$

Moreover, since we have

$$\begin{aligned}&{\frac{a_{n,g}\left( \chi ,h\right) }{f_n\left( \chi ,h\right) } -\frac{{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] }{{\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] } =\frac{1}{f_n\left( \chi ,h\right) {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] }}\\&\quad \left\{ {\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] \left( a_{n,g}\left( \chi ,h\right) -{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] \right) -{\mathbb {E}}\left[ a_{n,g}\left( \chi ,h\right) \right] \right. \\&\qquad \left. \left( f_n\left( \chi ,h\right) -{\mathbb {E}}\left[ f_n\left( \chi ,h\right) \right] \right) \right\} . \end{aligned}$$

Using Slutsky’s theorem and (9) and (10), we get (31).

1.3 Proof of Theorem 2

The proof is based on the following decomposition:

$$\begin{aligned}&{\Pr }^{\mathcal {S}}\left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) } \left\{ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) -{\widehat{p}}_{n,g} \left( \chi ,b\right) \right\} \le y\right) \\&\quad -\Pr \left( \sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) }\left\{ {\widehat{p}}_{n,g}\left( \chi ,h\right) -p_g\left( \chi \right) \right\} \le y\right) \\&\quad =\mathcal {T}_1\left( y\right) +\mathcal {T}_2\left( y\right) +\mathcal {T}_3\left( y\right) , \end{aligned}$$

where

$$\begin{aligned} \mathcal {T}_1\left( y\right)= & {} {\Pr }^{\mathcal {S}}\left( \sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) }\left\{ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) -{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} \le y\right) \\&-\Phi \left( \frac{y-\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) } \left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) \right] -{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) Var^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g} \left( \chi ,h\right) \right] }}\right) ,\\ \mathcal {T}_2\left( y\right)= & {} \Phi \left( \frac{y-\sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) }\left\{ \mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) Var \left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] }}\right) \\&-\Pr \left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\left\{ {\widehat{p}}_{n,g} \left( \chi ,h\right) -p_g\left( \chi \right) \right\} \le y\right) ,\\ \mathcal {T}_3\left( y\right)= & {} \Phi \left( \frac{y-\sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) }\left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g} \left( \chi ,h\right) \right] -{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) Var^{\mathcal {S}} \left[ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) \right] }}\right) \\&-\Phi \left( \frac{y-\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) } \left\{ \mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) Varr \left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] }}\right) , \end{aligned}$$

where \(\mathrm{E}^{\mathcal {S}}\) and \(Var^{\mathcal {S}}\) denote expectation and variance, conditionally on the sample \(\mathcal {S}\), and \(\psi \) denotes the standard normal distribution function. The first part of Theorem 1 ensures that

$$\begin{aligned} \mathcal {T}_2\left( y\right) \rightarrow 0\quad \text{ a.s. }\quad \forall y\in {\mathbb {R}}. \end{aligned}$$
(32)

Moreover,

$$\begin{aligned} \mathcal {T}_1\left( y\right) \rightarrow 0\quad \text{ a.s. }\quad \forall y\in {\mathbb {R}}, \end{aligned}$$
(33)

follows from the next lemma.

Lemma 2

Assume that Assumptions \(\left( A1\right) \)\(\left( A5\right) \) hold. Then, we have

$$\begin{aligned} \frac{{\widehat{p}}_{n,g}^*\left( \chi ,h\right) -\mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }{\sqrt{Var^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) \right] }}{\mathop {\rightarrow }\limits ^{d}} \mathcal {N}\left( 0,1\right) . \end{aligned}$$

Now, from (32), (33) and Polya’s theorem (see, e.g., Serfling 1980, p. 18) together with the continuity of the function \(\psi \), we arrive at

$$\begin{aligned} \mathrm{sup}_{y\in {\mathbb {R}}}\left| \mathcal {T}_1\left( y\right) \right| +\mathrm{sup}_{y\in {\mathbb {R}}}\left| \mathcal {T}_2\left( y\right) \right| \rightarrow 0\quad \text{ a.s. }\quad \forall y\in {\mathbb {R}}. \end{aligned}$$

Finally, it remains to study the term \(\mathcal {T}_3\left( y\right) \). Using the fact that, for any \(a>0\) and \(c\in {\mathbb {R}}\),

$$\begin{aligned} \mathrm{sup}_{y\in {\mathbb {R}}}\left| \psi \left( c+ay\right) -\psi \left( y\right) \right| \le \left| c\right| +\mathrm{max}\left\{ a,a^{-1}\right\} -1, \end{aligned}$$

and considering

$$\begin{aligned} a=\sqrt{\frac{Var\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] }{Var^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }} \end{aligned}$$

and

$$\begin{aligned} c=\frac{\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\left\{ \mathrm{E} \left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) -\mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) \right] +{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) Var^{\mathcal {S}} \left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }}, \end{aligned}$$

we get

$$\begin{aligned}&\mathrm{sup}_{y\in {\mathbb {R}}}\left| \mathcal {T}_3\left( y\right) \right| \nonumber \\&\quad \le \left| \frac{\sqrt{\gamma _n^{-1}F_{\chi } \left( h_n\right) }\left\{ \mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) -\mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g} \left( \chi ,h\right) \right] +{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} }{\sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) Var^{\mathcal {S}} \left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }}\right| \nonumber \\&\qquad +\mathrm{max}\left\{ \sqrt{\frac{Var\left[ {\widehat{p}}_{n,g} \left( \chi ,h\right) \right] }{Var^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^* \left( \chi ,h\right) \right] }},\sqrt{\frac{Var^{\mathcal {S}} \left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }{Var \left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] }}\right\} -1. \end{aligned}$$
(34)

The combination of (10), (34) and the following two lemmas ensure the convergence of \(\mathrm{sup}_{y\in {\mathbb {R}}}\left| \mathcal {T}_3\left( y\right) \right| \).

Lemma 3

Assume that Assumptions \(\left( A1\right) \)\(\left( A5\right) \) hold. Then

$$\begin{aligned} \sqrt{\frac{Var\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] }{Var^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] }}\rightarrow 1\quad \text{ a.s. } \end{aligned}$$

Lemma 4

Assume that Assumptions \(\left( A1\right) \)\(\left( A5\right) \) hold. Then

$$\begin{aligned} \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\left\{ \mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) -\mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}^*_{n,g}\left( \chi ,h\right) \right] +{\widehat{p}}_{n,g}\left( \chi ,b\right) \right\} \rightarrow 0\quad \text{ a.s. } \end{aligned}$$

1.3.1 Proof of Lemma 2

Using the fact that, for x such that \({\widehat{f}}_{n}^*\left( \chi ,h\right) \not =0\), we have the following decomposition:

$$\begin{aligned} {\widehat{p}}_{n,g}^*\left( \chi ,h\right) -p_g\left( \chi \right)= & {} \mathcal {D}_n^*\left( \chi ,h\right) \frac{f\left( \chi \right) }{{\widehat{f}}_{n}^*\left( \chi ,h\right) }, \end{aligned}$$
(35)

with

$$\begin{aligned} \mathcal {D}_n^*\left( \chi ,h\right)= & {} \frac{1}{f\left( \chi \right) } \left\{ {\widehat{a}}_{n}^*\left( \chi ,h\right) -p_g\left( \chi \right) {\widehat{f}}_{n}^*\left( \chi ,h\right) \right\} . \end{aligned}$$

It follows from (35), that the asymptotic behavior of \({\widehat{p}}^*_{n,g}\left( \chi ,h\right) -p_g\left( \chi \right) \) can be deduced from the one of \(\mathcal {D}^*_n\left( \chi ,h\right) \). Let us set

$$\begin{aligned} Z_k^*\left( \chi \right) =\frac{\gamma _k}{Q_kh_k} \left\{ \mathbb {1}_{\left\{ Y_k^*=g\right\} }-p_g\left( \chi \right) \right\} K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \end{aligned}$$

and

$$\begin{aligned} T_k^*\left( \chi \right) =Z_k^*\left( \chi \right) -\mathrm{E}^{\mathcal {S}}\left[ Z_k^*\left( \chi \right) \right] . \end{aligned}$$
(36)

Hence, we readily infer that

$$\begin{aligned} \mathcal {D}_n^*\left( \chi ,h\right) -\mathrm{E}^{\mathcal {S}} \left[ \mathcal {D}_n^*\left( \chi ,h\right) \right]= & {} \frac{Q_n}{f \left( \chi \right) \mathrm{E}\left[ {\widehat{f}}_n\left( \chi ,h\right) \right] } \sum _{k=1}^nT_k^*\left( \chi \right) . \end{aligned}$$

Moreover, since we have

$$\begin{aligned} Var^{\mathcal {S}}\left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] =\varepsilon _k^2,\quad \mathrm{E}^{\mathcal {S}}\left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} } \right] ={\widehat{p}}_{n,g}\left( \chi _k,b\right) , \end{aligned}$$

and given that \(\mathrm{lim}_{n\rightarrow \infty }\left( n\gamma _n\right) >\left( \mathcal {F}_a +\gamma \right) /2-a\), the application of Lemma 1 together with (20), (26) and (36), ensures that

$$\begin{aligned} v_n^{*2}= & {} \sum _{k=1}^nVar^{\mathcal {S}}\left( T_{k}^*\left( \chi \right) \right) =\sum _{k=1}^n\frac{\gamma _k^2}{Q_k^{2}h_k^{2}}Var^{\mathcal {S}} \left[ \left\{ \mathbb {1}_{\left\{ Y_k^*=g\right\} }-p_g\left( \chi \right) \right\} K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \\= & {} O\left( \sum _{k=1}^n\frac{\gamma _k^2}{Q_k^{2}h_k^{2}}F_{\chi }\left( h_k\right) \right) =O\left( \frac{\gamma _nF_{\chi }\left( h_n\right) }{Q_n^2h_n^2}\right) . \end{aligned}$$

Now, we have, for all \(p>0\),

$$\begin{aligned} \mathrm{E}\left[ \left| Z_k^*\left( \chi \right) \right| ^{2+p}\right]= & {} O\left( \frac{F_{\chi }\left( h_k\right) }{h_k^{1+p}}\right) , \end{aligned}$$

and, since \(\mathrm{lim}_{n\rightarrow \infty }\left( n\gamma _n\right) >\left( \mathcal {F}_a +\gamma \right) /2-a\), there exists \(p>0\) such that \(\mathrm{lim}_{n\rightarrow \infty } \left( n\gamma _n\right) >\frac{1+p}{2+p}\left( \left( \mathcal {F}_a+\gamma \right) /2 -a\right) \). The application of Lemma 1, ensures that

$$\begin{aligned} \sum _{k=1}^n\mathrm{E}^{\mathcal {S}}\left[ \left| T_{k}^*\left( \chi \right) \right| ^{2+p} \right]= & {} O\left( \sum _{k=1}^n \frac{\gamma _k^{2+p}}{Q_k^{2+p}}\mathrm{E}^{\mathcal {S}} \left[ \left| Z_k^*\left( \chi \right) \right| ^{2+p}\right] \right) \\= & {} O\left( \sum _{k=1}^n \frac{Q_k^{-2-p}\gamma _k^{2+p}F_{\chi }\left( h_k\right) }{h_k^{1+p}}\right) \\= & {} O\left( \frac{\gamma _n^{1+p}F_{\chi }\left( h_n\right) }{Q_n^{2+p}h_n^{1+p}} \right) \nonumber , \end{aligned}$$

it comes that

$$\begin{aligned} \frac{1}{\left| v_n^{*}\right| ^{2+p}}\sum _{k=1}^n\mathrm{E}^{\mathcal {S}}\left[ \left| T_{k}^*\left( \chi \right) \right| ^{2+p}\right]= & {} O\left( {\left[ \gamma _nh_n^{-1}F_{\chi }\left( h_n\right) \right] }^{p/2}\right) =o\left( 1\right) . \end{aligned}$$

The convergence in (31) then follows from the application of Lyapounov’s theorem.

1.3.2 Proof of Lemma 3

Now, we consider the following decomposition:

$$\begin{aligned} Var^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right]\simeq & {} \frac{Var^{\mathcal {S}}\left[ {\widehat{a}}_{n}^*\left( \chi ,h\right) \right] }{\left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{f}}^*_{n}\left( \chi ,h\right) \right] \right\} ^2}\nonumber \\&-4\frac{\mathrm{E}^{\mathcal {S}}\left[ {\widehat{a}}^*_{n}\left( \chi ,h\right) \right] Cov^{\mathcal {S}} \left( {\widehat{a}}^*_{n}\left( \chi ,h\right) ),{\widehat{f}}^*_{n} \left( \chi ,h\right) \right) }{\left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{f}}^*_{n}\left( \chi ,h\right) \right] \right\} ^3}\nonumber \\&+3Var^{\mathcal {S}}\left[ {\widehat{f}}^*_{n}\left( \chi ,h\right) \right] \frac{\left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{a}}^*_{n}\left( \chi ,h\right) \right] \right\} ^2}{\left\{ \mathrm{E}^{\mathcal {S}}\left[ {\widehat{f}}^*_{n}\left( \chi ,h\right) \right] \right\} ^4}. \end{aligned}$$
(37)

Moreover, we have for

$$\begin{aligned}&Var^{\mathcal {S}}\left[ {\widehat{a}}_{n}^*\left( \chi ,h\right) \right] =\frac{Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}K^2 \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) Var^{\mathcal {S}} \left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] }{\left( Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}\mathrm{E} \left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right) ^2}, \qquad \end{aligned}$$
(38)
$$\begin{aligned}&\mathrm{E}^{\mathcal {S}}\left[ {\widehat{f}}_{n}^*\left( \chi ,h\right) \right] =\frac{Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) }{Q_n\sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}\mathrm{E}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] } \end{aligned}$$
(39)

and

$$\begin{aligned}&{\mathrm{E}^{\mathcal {S}}\left[ {\widehat{a}}_{n}^*\left( \chi ,h\right) {\widehat{f}}_{n}^*\left( \chi ,h\right) \right] }\nonumber \\&\quad =\frac{Q_n^2\sum _{k=1}^nQ_k^{-2}\gamma _k^2h_k^{-2}K^2\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \mathrm{E}^{\mathcal {S}} \left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] }{\left( Q_n\sum _{k=1}^nQ_k^{-1} \gamma _kh_k^{-1}\mathrm{E}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right) ^2}\nonumber \\&\quad +\, \frac{Q_n^2\sum _{\begin{array}{c} k,k^{\prime }=1\\ k\not =k^{\prime } \end{array}}^nQ_k^{-1} \Pi _{k^{\prime }}^{-1}\gamma _k\gamma _{k^{\prime }}h_k^{-1}h_{k^{\prime }}^{-1}K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k^{\prime }}\right) \mathrm{E}^{\mathcal {S}}\left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] }{\left( Q_n \sum _{k=1}^nQ_k^{-1}\gamma _kh_k^{-1}\mathrm{E}\left[ K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \right] \right) ^2}. \end{aligned}$$
(40)

We recall again that

$$\begin{aligned} Var^{\mathcal {S}}\left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] =\varepsilon _k^2,\quad \mathrm{E}^{\mathcal {S}}\left[ \mathbb {1}_{\left\{ Y_k^*=g\right\} }\right] ={\widehat{p}}_{n,g}\left( \chi _k,b\right) , \end{aligned}$$

the combination of (37), (38), (39), (40) and some computational analysis ensures that

$$\begin{aligned} Var^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] =Var\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] \left( 1+o\left( 1\right) \right) . \end{aligned}$$

1.3.3 Proof of Lemma 4

This proof follows the same steps as those used in Ferraty et al. (2010) and more recently in Slaoui (2019) by using the following decomposition:

$$\begin{aligned} \mathrm{E}^{\mathcal {S}}\left[ {\widehat{p}}_{n,g}^*\left( \chi ,h\right) \right] -{\widehat{p}}_{n,g}\left( \chi ,b\right) ={\mathbb {I}}_1+{\mathbb {I}}_2+{\mathbb {I}}_3, \end{aligned}$$

where

$$\begin{aligned} {\mathbb {I}}_1= & {} {\mathbb {J}}_1^{-1}\sum _{k=1}^n\frac{Q_n\gamma _k}{Q_kh_k}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \left\{ {\widehat{a}}_{n,g}\left( \chi _k,b\right) -{\widehat{p}}_{n,g} \left( \chi ,b\right) {\widehat{f}}_{n}\left( \chi _k,b\right) \right. \\&-\left. \mathrm{E}\left[ {\widehat{a}}_{n,g}\left( \chi _k,b\right) \right] +\mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,b\right) {\widehat{f}}_{n} \left( \chi _k,b\right) \right] \right\} ,\\ {\mathbb {I}}_2= & {} {\mathbb {J}}_1^{-1}\sum _{k=1}^n\frac{Q_n\gamma _k}{Q_kh_k}K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \left\{ \mathrm{E}\left[ {\widehat{a}}_{n,g}\left( \chi _k,b\right) \right] -\mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,b\right) {\widehat{f}}_{n} \left( \chi _k,b\right) \right] \right. \\&\left. -{a}\left( \chi _k\right) +p_g\left( \chi \right) {f}\left( \chi _k\right) \right\} ,\\ {\mathbb {I}}_3= & {} {\mathbb {J}}_1^{-1}\sum _{k=1}^n\frac{Q_n\gamma _k}{Q_kh_k}K \left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) \left\{ {a}_g\left( \chi \right) -p_g\left( \chi \right) f\left( \chi _k\right) \right\} ,\\ {\mathbb {J}}_1= & {} \sum _{k=1}^n\frac{Q_n\gamma _k}{Q_kh_k}K\left( \frac{\left\| \chi -\mathcal {X}_k\right\| }{h_k}\right) {\widehat{f}}_{n}\left( \chi _k,b\right) . \end{aligned}$$

Moreover, we can check that \({\mathbb {I}}_3=\mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,h\right) \right] -p_g\left( \chi \right) +o\left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\right) \) a.s., whereas \({\mathbb {I}}_1\) and \({\mathbb {I}}_2\) are \(o\left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\right) \) a.s. by the following two Lemmas.

Lemma 5

Assume that Assumptions \(\left( A1\right) \)\(\left( A5\right) \) hold. Then

$$\begin{aligned}&\mathrm{sup}_{\left\| \chi -\chi _1\right\| \le h}\left| \mathrm{E}\left[ {\widehat{a}}_{n}\left( \chi ,b\right) \right] -\mathrm{E}\left[ {\widehat{p}}_{n,g}\left( \chi ,b\right) {\widehat{f}}_{n} \left( \chi _1,b\right) \right] -a_g\left( \chi _1\right) \right. \\&\quad \left. +p_g\left( \chi \right) f \left( \chi _1\right) \right| =o\left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\right) \quad \text{ a.s. } \end{aligned}$$

Lemma 6

Assume that Assumptions \(\left( A1\right) \)\(\left( A5\right) \) hold. Then

$$\begin{aligned} \mathrm{sup}_{\left\| \chi -\chi _1\right\| \le h}\left| \mathrm{E}\left[ {\widehat{a}}_{n} \left( \chi _1,b\right) )\right] -\mathrm{E}\left[ {\widehat{p}}_{n,g} \left( \chi ,b\right) {\widehat{f}}_{n}\left( \chi _1,b\right) \right] \right. \\ \left. -{\widehat{a}}_{n}\left( \chi _1,b\right) +{\widehat{p}}_{n,g} \left( \chi ,b\right) {\widehat{f}}_{n}\left( \chi _1,b\right) \right| =o\left( \sqrt{\gamma _n^{-1}F_{\chi }\left( h_n\right) }\right) \quad \text{ a.s. } \end{aligned}$$

The proof of Lemmas 5 and 6 are obtained by following the same lines and decompositions as the one considered in the proof of Lemmas A.5 and A.6 in Ferraty et al. (2010) and more recently in Slaoui (2019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaoui, Y. Recursive non-parametric kernel classification rule estimation for independent functional data. Comput Stat 36, 79–112 (2021). https://doi.org/10.1007/s00180-020-01024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01024-9

Keywords

Navigation