Skip to main content
Log in

Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, a partially linear varying-coefficient model with measurement errors in the nonparametric component as well as missing response variable is studied. Two estimators for the parameter vector and nonparametric function are proposed based on the locally corrected profile least squares method. The first estimator is constructed by using the complete-case data only, and another by using an imputation technique. Both proposed estimators of the parametric component are shown to be asymptotically normal, and the estimators of nonparametric function are proved to achieve the optimal strong convergence rate as the usual nonparametric regression. Some simulation studies are conducted to compare the behavior of these estimators and the results confirm that the estimators based on the imputation technique perform better than the complete-case data estimator in finite samples. Finally, an application to a real data set is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Leelahanon S, Li Q (2005) Efficient estimation of a semiparametric partially linear varying coefficient model. Ann Stat 33:258–283

    Article  MathSciNet  Google Scholar 

  • Fan JQ, Huang T (2005) Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11:1031–1057

    Article  MathSciNet  Google Scholar 

  • Fan JQ, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 9:1348–1360

    Article  MathSciNet  Google Scholar 

  • Fan GL, Xu HX, Huang ZS (2016a) Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part. Adv Stat Anal 100:21–41

    Article  MathSciNet  Google Scholar 

  • Fan GL, Liang HY, Shen Y (2016b) Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors. J Multivar Anal 147:183–201

    Article  MathSciNet  Google Scholar 

  • Fan GL, Liang HY, Zhu LX (2018) Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models. Sci China Math 61:1677–1694

    Article  MathSciNet  Google Scholar 

  • Feng SY, Xue LG (2014) Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition. Ann Inst Stat Math 66:121–140

    Article  MathSciNet  Google Scholar 

  • Hu XM, Wang ZZ, Zhao ZW (2009) Empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models. Stat Probab Lett 79:1044–1052

    Article  MathSciNet  Google Scholar 

  • Kai B, Li R, Zou H (2011) New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann Stat 39:305–332

    Article  MathSciNet  Google Scholar 

  • Li TZ, Mei CL (2013) Estimation and inference for varying coefficient partially nonlinear models. J Stat Plann Infer 143:2023–2037

    Article  MathSciNet  Google Scholar 

  • Liang H, Wang SJ, Carroll RJ (2007) Partially linear models with missing response variables and error-prone covariates. Biometrika 94:185–198

    Article  MathSciNet  Google Scholar 

  • Long W, Ouyang M, Shang Y (2013) Efficient estimation of partially linear varying coefficient models. Econ Lett 121:79–81

    Article  MathSciNet  Google Scholar 

  • Wang QH, Sun ZH (2007) Estimation in partially linear models with missing responses at random. J Multivar Anal 98:1470–1493

    Article  MathSciNet  Google Scholar 

  • Wang QH, Xue LG (2011) Statistical inference in partially-varying-coefficient single-index model. J Multivar Anal 201:1–19

    Article  MathSciNet  Google Scholar 

  • Wang QH, Linton O, Härdle W (2004) Semiparametric regression analysis with missing response at random. J Am Stat Assoc 99:334–345

    Article  MathSciNet  Google Scholar 

  • Wang XL, Li GR, Lin L (2011) Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models. Metrika 73:171–185

    Article  MathSciNet  Google Scholar 

  • Wei CH (2012a) Statistical inference in partially linear varying-coefficient models with missing responses at random. Commun Stat Theory Methods 41:1284–1298

    Article  Google Scholar 

  • Wei CH (2012b) Statistical inference for restricted partially linear varying coefficient errors-in-variables models. J Stat Plan Inference 142:2464–2472

    Article  MathSciNet  Google Scholar 

  • Wei CH, Mei CL (2012) Empirical likelihood for partially linear varying-coefficient models with missing response variables and error-prone covariates. J Korean Stat Soc 41:97–103

    Article  MathSciNet  Google Scholar 

  • Xia YC, Li WK (1999) On the estimation and testing of functional-coefficient linear models. Stat Sin 9:737–757

    MathSciNet  Google Scholar 

  • Xue LG, Xue D (2011) Empirical likelihood for semiparametric regression model with missing response data. J Multivar Anal 102:723–740

    Article  MathSciNet  Google Scholar 

  • Yang H, Xia XC (2014) Equivalence of two tests in varying coefficient partially linear errors in variable model with missing responses. J Korean Stat Soc 43:79–90

    Article  MathSciNet  Google Scholar 

  • Yang YP, Xue LG, Cheng WH (2011) Two-step estimators in partial linear models with missing response variables and error-prone covatiates. J Syst Sci Complex 24:1165–1182

    Article  MathSciNet  Google Scholar 

  • You JH, Chen GM (2006) Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. J Multivar Anal 97:324–341

    Article  MathSciNet  Google Scholar 

  • You JH, Zhou Y (2006) Empirical likelihood for semi-parametric varying coefficient partially linear model. Stat Probab Lett 76:412–422

    Article  Google Scholar 

  • Zhang WY, Lee SY, Song XY (2002) Local polynomial fitting in semivarying coefficient model. J Multivar Anal 82:166–188

    Article  MathSciNet  Google Scholar 

  • Zhang WW, Li GR, Xue LG (2011) Profile inference on partially linear varying-coefficient errors-in-variables models under restricted condition. Comput Stat Data Anal 55:3027–3040

    Article  MathSciNet  Google Scholar 

  • Zhang J, Zhou NG, Chen Q, Chu TY (2018) Nonlinear measurement errors models subject to partial linear additive distortion. Braz J Probab Stat 32:86–116

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11601419, 11801438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ting Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of the main results

Appendix: Proofs of the main results

We begin with the following assumption conditions required to derive the main results. These conditions are quite mild and can be easily satisfied.

C1: The random variable u has a bounded support \(\Pi \). Its probability density function f(.) is Lipschitz continuous and bounded away from 0 on its support.

C2: The \(q\times q\) matrix \(\mathrm{E}(\mathbf{ZZ} ^T|U)\) and \(\mathrm{E}(\delta \mathbf{ZZ} ^T|U)\) are nonsingular for each \(U\in \Pi \). The matrix \(\mathrm{E}(\mathbf{ZZ} ^T|U)\), \(\mathrm{E}(\mathbf{ZZ} ^T|U)^{-1}\), \(\mathrm{E}(\delta \mathbf{ZZ} ^T|U)\), \(\mathrm{E}(\delta \mathbf{ZZ} ^T|U)^{-1}\), \(\mathrm{E}(\mathbf{ZX} ^T|U)\) and \(\mathrm{E}(\delta \mathbf{ZX} ^T|U)\) are all Lipschitz continuous.

C3: There exists an \(s>0\) such that \(\mathrm{E}||\mathbf{X} ||^{2s}<\infty \),\(\mathrm{E}||\mathbf{Z} ||^{2s}<\infty \) and for some \(k<2-s^{-1}\) such that \(n^{2k-1}h\longrightarrow \infty .\)

C4: \(\alpha _j(u),j=1,\ldots ,q\) have continuous second derivative for \(u\in \Pi \).

C5: The Kernel K(.) is a symmetric probability density function with compact support and the bandwidth h satisfies \(nh^8\longrightarrow 0\) and \(nh^2/(\mathrm{log} n)^2\longrightarrow \infty \) when \(n\longrightarrow \infty \).

In order to prove the main results, we first give several Lemmas. The following notations will be used in the proof of the Lemmas and Theorems. Let \(c_n=(\mathrm{log}n/nh)^{1/2}\), \(\mu _i=\int _0^{\infty } t^i K(t)\mathrm{d}t\), \(\mathbf{M} =[\mathbf{Z} _1^T\varvec{\alpha }(U_1),\dots ,\mathbf{Z} _n^T\varvec{\alpha }(U_n)]^T\), \(\mathbf{M} ^\mathbf{W }=[\mathbf{W} _1^T\varvec{\alpha }(U_1),\ldots ,\mathbf{W} _n^T\varvec{\alpha }(U_n)]^T\), \(\tilde{\varepsilon }_i={\varepsilon }_i-\sum _{k=1}^n \mathbf{S} _{ik}^{c} \varepsilon _k\) and \(\tilde{\mathbf{Z }}_i=\mathbf{Z }_i-\sum _{k=1}^n \mathbf{S} _{ik}^{c} \mathbf{Z} _k.\)

Lemma 1

Suppose that conditions C1–C5 hold. Then the followings hold uniformly

$$\begin{aligned} (\mathbf{D} _u^\mathbf{Z} )^T \varvec{\omega }_u\mathbf{D} _u^\mathbf{Z} -\varvec{\Omega }_u=nf(u)\varvec{\Gamma }(u)\otimes \left( \begin{array}{ll} 1&{} \mu _1\\ \mu _1&{} \mu _2 \\ \end{array}\right) [1+O_p(c_n)]. \end{aligned}$$
(20)
$$\begin{aligned} (\mathbf{D} _u^\mathbf{Z} )^T \varvec{\omega }_u \mathbf{X} =nf(u)\varvec{\Phi }(u)\otimes (1, \mu _1)^{T}[1+O_p(c_n)]. \end{aligned}$$
(21)
$$\begin{aligned} (\mathbf{D} _u^\mathbf{W} )^T \varvec{\omega }_u^\delta \mathbf{D} _u^\mathbf{W} -\varvec{\Omega }_u^\delta =nf(u)\varvec{\Gamma }_c(u)\otimes \left( \begin{array}{ll} 1&{} \mu _1\\ \mu _1&{} \mu _2 \\ \end{array} \right) [1+O_p(c_n)]. \end{aligned}$$
(22)
$$\begin{aligned} (\mathbf{D} _u^\mathbf{W} )^T \varvec{\omega }_u^\delta \mathbf{X} =nf(u)\varvec{\Phi }_c(u)\otimes (1, \mu _1)^{T}[1+O_p(c_n)]. \end{aligned}$$
(23)

Proof

Equations (20) and (21) are given in Lemma 2 in Feng and Xue (2014). Similarly, Eqs. (22) and (23) can also be obtained.

Lemma 2

Suppose that conditions C1–C5 hold. Then

$$\begin{aligned} \frac{1}{{n}}\sum _{i=1}^{n}\delta _i(\tilde{\mathbf{X }}_i\tilde{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{Q} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i\mathbf{X} ) \longrightarrow \varvec{\Sigma _1}, ~~a.s, \end{aligned}$$
$$\begin{aligned} \frac{1}{{n}}\sum _{i=1}^{n}(\bar{\mathbf{X }}_i\bar{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{R} _i\mathbf{X} ) \longrightarrow \varvec{\Sigma }, ~~a.s, \end{aligned}$$
$$\begin{aligned} \frac{1}{{ n}}\sum _{i=1}^{n}(1-\delta _i)(\bar{\mathbf{X }}_i \tilde{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i \mathbf{X} )\longrightarrow \varvec{\Sigma }_2,~~a.s, \end{aligned}$$

where \(\varvec{\Sigma _1}\) is defined in Theorem 1, \(\varvec{\Sigma }\) and \(\varvec{\Sigma }_2\) are defined in Theorem 3.

Proof

The proof of this Lemma is similar to that of Lemma 7.2 in Fan and Huang (2005). Hence, the details are omitted.

Proof of Theorem 1

Let

$$\begin{aligned} B_n=\frac{1}{{n}}\sum _{i=1}^{n}\delta _i(\tilde{\mathbf{X }}_i\tilde{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{Q} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i\mathbf{X} ), \end{aligned}$$

and

$$\begin{aligned} A_n=\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}\delta _i\left[ \tilde{\mathbf{X }}_i(\tilde{Y}_i-\tilde{\mathbf{X }}_i^T \varvec{\beta }) -\mathbf{X} ^T\mathbf{Q} _i^T\varvec{\Sigma }_\xi \mathbf{Q} _i(\mathbf{Y} -\mathbf{X} \varvec{\beta })\right] . \end{aligned}$$

Then,

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\beta }}_c-\varvec{\beta })=B_n^{-1}A_n. \end{aligned}$$
(24)

For \(A_n\), by simple calculation and similar proof of Lemma 4 in Feng and Xue (2014), we have

$$\begin{aligned} A_n= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\delta _i\left[ \tilde{\mathbf{X }}_i(\tilde{\mathbf{Z }}_i^T\varvec{\alpha }(U_i)+\tilde{\varepsilon }_i) -\mathbf{X} ^T\mathbf{Q} _i^T\varvec{\Sigma }_\xi \mathbf{Q} _i(\mathbf{M} +\varvec{\varepsilon })\right] \nonumber \\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}\delta _i \left\{ [\mathbf{X} _i-\varvec{\Phi }_c^T(U_i)\varvec{\Gamma }_c^{-1}(U_i)\mathbf{Z} _i] [\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i)]\right. \nonumber \\&\left. -\,\varvec{\Phi }_c^T(U_i)\varvec{\Gamma }_c^{-1}(U_i)\varvec{\xi }_i\varepsilon _i +\varvec{\Phi }_c^T(U_i)\varvec{\Gamma }_c^{-1}(U_i)(\varvec{\xi }_i \varvec{\xi }_i^T-\varvec{\Sigma }_\xi )\varvec{\alpha }(U_i)\right\} +o_p(1)\nonumber \\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^{n} \mathbf{G} _i +o_p(1). \end{aligned}$$
(25)

It is easy to see that \(\mathbf{G} _i\) is independent and identical distributed with mean zero and \(\mathrm {Cov}(\mathbf{G} _i)=\varvec{\Omega }_1.\)

Thus, by the Slutsky theorem, Lemma 2 and the central limit theorem, we complete the Theorem.

Proof of Theorem 2

By the definition of \(\hat{\varvec{\alpha }}_c(u)\), we can obtain that

$$\begin{aligned} \hat{\varvec{\alpha }}_c(u)= & {} (\mathbf{I} _q,\mathbf 0 _{q})[(\mathbf{D} _u^\mathbf{W} )^T \varvec{\omega }_u^\delta \mathbf{D} _u^\mathbf{W} -\varvec{\Omega }_u^\delta ]^{-1}(\mathbf{D} _u^\mathbf{W} )^T\varvec{\omega }_u^\delta \mathbf{M} \\ \nonumber&+\, (\mathbf{I} _q,\mathbf 0 _{q})[(\mathbf{D} _u^\mathbf{W} )^T \varvec{\omega }_u^\delta \mathbf{D} _u^\mathbf{W} -\varvec{\Omega }_u^\delta ]^{-1}(\mathbf{D} _u^\mathbf{W} )^T\varvec{\omega }_u^\delta \varvec{\varepsilon }\\\nonumber&+\, (\mathbf{I} _q,\mathbf 0 _{q})[(\mathbf{D} _u^\mathbf{W} )^T \varvec{\omega }_u^\delta \mathbf{D} _u^\mathbf{W} -\varvec{\Omega }_u^\delta ]^{-1}(\mathbf{D} _u^\mathbf{W} )^T\varvec{\omega }_u^\delta \mathbf{X} (\varvec{\beta }-\hat{\varvec{\beta }}_c). \end{aligned}$$

By Theorem 1, similar to the proof of Theorem 3.1 in Xia and Li (1999), it is easy to show that

$$\begin{aligned} \underset{{1\le j\le p}}{\mathrm {max}}\underset{{u\in \Pi }}{\mathrm {sup}}|\hat{\alpha }_{cj}(u)-\alpha _j(u)|=O\{h_1^2+(\mathrm {log}n/{nh_1})^{1/2}\},~~~~ a.s. \end{aligned}$$

Let \(h_1=cn^{-1/5}\), where c is a constant. Then it yields that

$$\begin{aligned} \underset{{1\le j\le p}}{\mathrm {max}}\underset{{u\in \Pi }}{\mathrm {sup}}|\hat{\alpha }_{cj}(u)-\alpha _j(u)|=O(n^{-2/5}+(\mathrm {log} n)^{1/2}),~~~~a.s. \end{aligned}$$

Proof of Theorem 3

Similar to Theorem 1, it can be shown that

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\beta }}_I-\varvec{\beta })=D_n^{-1}E_n, \end{aligned}$$
(26)

where

$$\begin{aligned} D_n=\frac{1}{{n}}\sum _{i=1}^{n}(\bar{\mathbf{X }}_i\bar{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{R} _i\mathbf{X} ), \end{aligned}$$

and

For convenience, we denote \([\mathbf{S} _c(\mathbf{A} )]_i\) and \([\mathbf{S} _I(\mathbf{A} )]_i\) to respectively be the ith row of product of \(\mathbf{S} _c \mathbf{A} \) and \(\mathbf{S} _I\mathbf{A} \) for a given matrix \(\mathbf{A} \).

By simple calculation, it is obtained that

By Lemma 1, we have

$$\begin{aligned} I_1=\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(\mathbf{X} _i-\varvec{\Phi }(U_i)\varvec{\Gamma }^{-1}(U_i) \mathbf{W} _i)\delta _i (\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))+o_p(1). \end{aligned}$$
(27)

In view of Theorem 1 and the law of large numbers, it follows that

$$\begin{aligned} \nonumber I_2= & {} \frac{1}{{ n}}\sum _{i=1}^{n}(1-\delta _i) \bar{\mathbf{X }}_i \tilde{\mathbf{X }}_i^T \sqrt{n} (\hat{\varvec{\beta }}_c-\varvec{\beta })\\\nonumber= & {} \frac{1}{{ n}}\sum _{i=1}^{n}(1-\delta _i)(\bar{\mathbf{X }}_i \tilde{\mathbf{X }}_i^T-\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i \mathbf{X} ) \sqrt{n} (\hat{\varvec{\beta }}_c-\varvec{\beta })\\\nonumber&+\,\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i \mathbf{X} (\hat{\varvec{\beta }}_c-\varvec{\beta })+o_p(1)\\= & {} \varvec{\Sigma }_2 \varvec{\Sigma }_1^{-1} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}{} \mathbf{G} _i +\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)\mathbf{X} ^T\mathbf{R} _i^T\varvec{\Sigma }_{\xi } \mathbf{Q} _i \mathbf{X} (\hat{\varvec{\beta }}_c-\varvec{\beta })+o_p(1),\nonumber \\ \end{aligned}$$
(28)

where \(\mathbf{G} _i\) is defined in Theorem 1.

\(I_3\) can be written as

$$\begin{aligned} I_3= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)\mathbf{X }_i [\mathbf{S} _{c}(\varvec{\varepsilon }-\varvec{\xi }^T\varvec{\alpha }(u))]_i -\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)[\mathbf{S} _I(\mathbf{X })]_i^T [\mathbf{S} _{c}(\varvec{\varepsilon }-\varvec{\xi }^T\varvec{\alpha }(u))]_i\\= & {} I_{31}-I_{32}. \end{aligned}$$

By Lemma 1, it can be shown that

$$\begin{aligned} I_{31}= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)\mathbf{X }_i \mathbf{W} _i^T(n f(U_i)\varvec{\Gamma }_c(U_i))^{-1}\sum _{j=1}^nK_{h_1}(U_j-U_i)\mathbf{W} _j(\varepsilon _j-\varvec{\xi }_j^T\varvec{\alpha }(U_j))\delta _j\\= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n} \varvec{\Phi }(U_i)\varvec{\Gamma }_c^{-1}(U_i) \mathbf{W} _i \delta _i(\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))\\&-\,\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n} \varvec{\Phi }_c(U_i)\varvec{\Gamma }_c^{-1}(U_i) \mathbf{W} _i \delta _i(\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))+o_p(1). \end{aligned}$$

In a similar way, we obtain that,

$$\begin{aligned} I_{32}= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n} \varvec{\Phi }(U_i)\varvec{\Gamma }_c^{-1}(U_i) \mathbf{W} _i \delta _i(\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))\\&-\,\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n} \varvec{\Phi }(U_i)\varvec{\Gamma }^{-1}(U_i) \mathbf{W} _i \delta _i(\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))+o_p(1) \end{aligned}$$

Therefor,

$$\begin{aligned} I_3=\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}[ \varvec{\Phi }(U_i)\varvec{\Gamma }^{-1}(U_i) \mathbf{W} _i - \varvec{\Phi }_c(U_i)\varvec{\Gamma }_c^{-1}(U_i) \mathbf{W} _i ]\delta _i(\varepsilon _i-\varvec{\xi }_i^T\varvec{\alpha }(U_i))+o_p(1).\nonumber \\ \end{aligned}$$
(29)

\(I_4\) can be expressed as

$$\begin{aligned} I_4= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}\bar{\mathbf{X }}_i (\mathbf{W} _i^T\varvec{\alpha }(U_i)-[\mathbf{S} _I(\mathbf{M} ^\mathbf{W} )]_i) -\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}\bar{\mathbf{X }}_i \delta _i [\mathbf{S} _{I}(\varepsilon -\varvec{\xi }^T\varvec{\alpha }(u))]_i\\&-\,\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}\bar{\mathbf{X }}_i (1- \delta _i) [\mathbf{S} _I(\mathbf{X} )]_i^T(\hat{\varvec{\beta }}_c-\varvec{\beta }) -\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}\bar{\mathbf{X }}_i (1- \delta _i)[\mathbf{S} _I(\hat{\mathbf{M }}_c^\mathbf{W }-\mathbf{M }^\mathbf{W })]_i\\= & {} I_{41}+I_{42}+I_{43}+I_{44} \end{aligned}$$

where \(\hat{\mathbf{M }}_c^\mathbf{W }=[\mathbf{W} _1^T\hat{\varvec{\alpha }}_c(U_1),\ldots ,\mathbf{W} _n^T\hat{\varvec{\alpha }}_c(U_n)]^T\). By Lemma 1, it can be shown that \(I_{41}=o_p(1)\) and \(I_{42}=o_p(1)\). By the fact that \(\hat{\varvec{\beta }}_c-\varvec{\beta }=O_p(n^{-1/2})\) from Theorem 1 and \(\frac{1}{{ n}}\sum _{i=1}^{n}\bar{\mathbf{X }}_i[\mathbf{S} _I(\mathbf{X} )]_i=o_p(1)\), \(I_{43}=o_p(1)\) is obtained. \(I_{44}=o_p(1)\) can also be proved similarly. Thus, we have

$$\begin{aligned} I_{4}=o_p(1). \end{aligned}$$
(30)

Similar to the calculation of \(I_4\), we can show that

$$\begin{aligned} I_5= & {} \frac{1}{{\sqrt{n}}}\sum _{i=1}^{n}(1-\delta _i)\bar{\mathbf{X }}_i ([\mathbf{S} _I(\mathbf{M} ^\mathbf{W} )]_i-\mathbf{W} _i^T\varvec{\alpha }(U_i))\\\nonumber= & {} o_p(1). \end{aligned}$$
(31)

Invoking (26)–(31), it can be obtained that

$$\begin{aligned} \sqrt{n}(\hat{\varvec{\beta }}_I-\varvec{\beta })=\Sigma ^{-1}(\Sigma _1+\Sigma _2)\Sigma _1^{-1}\frac{1}{{\sqrt{n}}}\sum _{i=1}^{n} \mathbf{G} _i+o_p(1). \end{aligned}$$

Thus, by the Slutsky theorem, Lemma 2 and the central limit theorem, we concludes the theorem.

Proof of Theorem 4

The proof of Theorem 4 is similar to Theorem 2, then, we omit it.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, YT., Li, FX. Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables. Comput Stat 35, 1637–1658 (2020). https://doi.org/10.1007/s00180-020-00967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-00967-3

Keywords

Navigation