Skip to main content

Advertisement

Log in

Discrete element modeling of the machining processes of brittle materials: recent development and future prospective

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In recent years, the discrete element method (DEM) has been used to model bulk material, especially brittle materials (such as rocks, ceramics, concrete, ice, etc.) with various mechanical properties or responses by setting serials of contact properties (such as bonds) in the particle assembly. These bonds can withstand a certain amount of force and/or moment, so that the stresses executed in the bond can be used for determining the initiation and propagation of micro-cracks. There are increasing evidences over the last 20 years that the DEM is becoming an effective numerical method to simulate the cracking, crushing, and deformation of continuous media under external loads. The DEM has now been widely used in the field of processing and machining of rock, ceramic, concrete, and other brittle materials. In this paper, the theoretical principles, formulations, and contact models as well as the numerical solving processes of DEM are introduced. The applications of DEM for the machining processes of brittle and rigid materials such as ceramics are described and reviewed in detail, and the future development trend is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Lichtner A, Roussel D, Röhrens D, Jauffres D, Villanova J, Martin CL, Bordia RK (2018) Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations. Acta Mater 155:343–349

    Google Scholar 

  2. Rakshit R, Das AK (2019) A review on cutting of industrial ceramic materials. Precis Eng 59(2):90–109

    Google Scholar 

  3. Keerthi PPS, Anoop Kumar S, Prasad PPC, Hemalatha K (2018) A review of partial ductile mode machining for brittle materials. IOP Conference Series: Mater Sci Eng 455(1):012057

    Google Scholar 

  4. Quan J, Fang Q, Chen J, Xie C, Liu Y, Wen P (2017) Investigation of subsurface damage considering the abrasive particle rotation in brittle material grinding. Int J Adv Manuf Technol 90(9–12):2461–2476

    Google Scholar 

  5. Kot M, Rakowski W, Lackner JM, Major Ł (2013) Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Mater Des 43:99–111

    Google Scholar 

  6. Li H, Li J, Yuan H (2018) A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor Appl Fract Mec 97:236–249

    Google Scholar 

  7. Shetty N, Shahabaz SM, Sharma SS, Divakara Shetty S (2017) A review on finite element method for machining of composite materials. Compos Struct 176:790–802

    Google Scholar 

  8. Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    MathSciNet  MATH  Google Scholar 

  9. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Method E 17(1):25–76

    MathSciNet  MATH  Google Scholar 

  10. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    MATH  Google Scholar 

  11. Lv D, Zhang Y (2018) Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics. Int J Adv Manuf Technol 96(5–8):2257–2269

    Google Scholar 

  12. Chen X, Liu CL, Ke JY, Zhang JG, Shu XW, Xu JF (2020) Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon. Mater Des 190:8

    Google Scholar 

  13. Meng B, Yuan D, Zheng J, Xu S (2019) Molecular dynamics study on femtosecond laser aided machining of monocrystalline silicon carbide. Mater Sci Semicond Process 101:1–9

    Google Scholar 

  14. Shockly M, Duong N, Ma J, Lei S, Jahan MP, Sundaram M (2019) Numerical investigation of the effects of operating parameters in the vibration assisted nano impact machining of single crystalline silicon by loose abrasive using molecular dynamics simulation. J Manuf Process 43(B):12–19

    Google Scholar 

  15. Abdulkadir LN, Abou-El-Hossein K, Jumare AI, Liman MM, Olaniyan TA, Odedeyi PB (2018) Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining. Int J Adv Manuf Technol 98(1–4):317–371

    Google Scholar 

  16. Riera JD, Miguel LFF, Iturrioz I (2014) Assessment of Brazilian tensile test by means of the truss-like discrete element method (DEM) with imperfect mesh. Eng Struct 81(15):10–21

    Google Scholar 

  17. Balevičius R, Kačianauskas R, Mroz Z, Sielamowicz I (2011) Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Adv Powder Technol 22(2):226–235

    Google Scholar 

  18. Jiang SQ, Li TT, Tan YQ (2015) A DEM methodology for simulating the grinding process of SiC ceramics. Procedia Eng 102:1803–1810

    Google Scholar 

  19. Tan YQ, Yang DM, Sheng Y (2009) Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J Eur Ceram Soc 29(6):1029–1037

    Google Scholar 

  20. Caserta AJ, Navarro HA, Cabezas-Gómez L (2016) Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM. Powder Technol 302:462–479

    Google Scholar 

  21. Jiang S, Li X, Zhang L, Tan Y, Peng R, Chen R (2018) Discrete element simulation of SiC ceramic containing a single pre-existing flaw under uniaxial compression. Ceram Int 44(3):3261–3276

    Google Scholar 

  22. Lei J, Zhang CZ (2018) A simplified evaluation of the mechanical energy release rate of kinked cracks in piezoelectric materials using the boundary element method. Eng Fract Mech 188:36–57

    Google Scholar 

  23. Peixoto RG, Ribeiro GO, Pitangueira RLS (2018) A boundary element method formulation for quasi-brittle material fracture analysis using the continuum strong discontinuity approach. Eng Fract Mech 202:47–74

    Google Scholar 

  24. Liu Y, Li BZ, Wu CJ, Kong LF, Zheng YH (2018) Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram Int 44(11):12194–12203

    Google Scholar 

  25. Wang X, Yang J, Liu Q, Zhang Y, Zhao C (2017) A comparative study of numerical modelling techniques for the fracture of brittle materials with specific reference to glass. Eng Struct 152(1):493–505

    Google Scholar 

  26. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 8(12):1013–1024

    Google Scholar 

  27. Mir A, Luo X, Siddiq A (2016) Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon. Int J Adv Manuf Technol 88(9–12):2461–2476

    Google Scholar 

  28. Guo X, Li Q, Liu T, Kang R, Jin Z, Guo D (2017) Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials. Front Mech Eng 12(1):89–98

    Google Scholar 

  29. Zhang C, Tan Y, Jiang S, Guo H (2017) Discrete element simulation of friction and wear of diamond saw blade carcass and marble. Diam Abras Eng 37(04):15–21 (in Chinese)

    Google Scholar 

  30. Procházka PP (2004) Application of discrete element methods to fracture mechanics of rock bursts. Eng Fract Mech 71(4–6):601–618

    Google Scholar 

  31. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min 41(8):1329–1364

    Google Scholar 

  32. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min 44(7):997–1010

    Google Scholar 

  33. Tao H, Tao J (2018) Impact of gradation change on mechanical behavior of soil: DEM and community detection. In: Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours, pp 959–966

    Google Scholar 

  34. Jiang M, Xi B, Arroyo M, Rodriguez-Dono A (2017) DEM simulation of soil-tool interaction under extraterrestrial environmental effects. J Terrramech 71:1–13

    Google Scholar 

  35. Bayesteh H, Ghasempour T (2019) Role of the location and size of soluble particles in the mechanical behavior of collapsible granular soil: a DEM simulation. Comput Part Mech 6(3):327–341

    Google Scholar 

  36. Qiu Y, Gu M, Wei Z (2015) Machining mechanism research of glass by discrete element method. J Mech Sci Technol 29(3):1283–1288

    Google Scholar 

  37. Jiang S, Tan Y, Zhang G, Peng R (2014) Prediction of high temperature mechanical properties of silicon carbide ceramics based on discrete element method. Mater Mech Eng 38(01):74–78+85 (in Chinese)

    Google Scholar 

  38. Huang H, Spencer B, Hales J (2014) Discrete element method for simulation of early-life thermal fracturing behavior in ceramic nuclear fuel pellets. Nucl Eng Des 278(15):515–528

    Google Scholar 

  39. Teles VC, Mello JDB, Silva WM (2017) Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: effect of interface roughness and of superficial flaws. Wear 376(B):1691–1701

    Google Scholar 

  40. Martin E, Leguillon D, Sevecek O, Bermejo R (2018) Understanding the tensile strength of ceramics in the presence of small critical flaws. Eng Fract Mech 201:167–175

    Google Scholar 

  41. Wang A, Hu P, Du B, Zhang X, Han J, Luo X (2017) Effect of collinear flaws on flexural strength and fracture behavior of ZrB2-SiC ceramic. Ceram Int 43(16):14488–14492

    Google Scholar 

  42. Jiang S, Li X, Tan Y, Liu H, Xu Z, Chen R (2017) Discrete element simulation of SiC ceramic with pre-existing random flaws under uniaxial compression. Ceram Int 43(16):13717–13728

    Google Scholar 

  43. Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. Muller Led Proc Symp Int Soc Rock Mech 1:8–12

    Google Scholar 

  44. Cundall PA, Strack OD (1971) The distinct element method as a tool for research in granular media: part II report to the National Science Foundation. University of Minnesota

  45. Cundall PA (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  46. Munjiza A, Andrews KRF (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer Methods Eng 43(1):131–149

    MATH  Google Scholar 

  47. Williams JR, Perkins E, Cook B (2004) A contact algorithm for partitioning N arbitrary sized objects. Eng Comput 21(2–4):235–248

    MATH  Google Scholar 

  48. Bonet J, Peraire J (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int J Numer Methods Eng 31(1):1–17

    MATH  Google Scholar 

  49. Feng YT, Owen DRJ (2002) An augmented spatial digital tree algorithm for contact detection in computational mechanics. Int J Numer Methods Eng 55(2):159–176

    MATH  Google Scholar 

  50. Han K, Feng YT, Owen DRJ (2007) Performance comparisons of tree-based and cell-based contact detection algorithms. Eng Comput 24(1–2):165–181

    MATH  Google Scholar 

  51. Li Y, Zou W, Wu W, Chen L, Chu X (2018) Triaxial compression tests of QH-E lunar soil simulant under constant mean principal stress path using discrete element method simulations. Granul Matter 20(4):79

    Google Scholar 

  52. Jiang S, He M, Li X, Tang C, Liu J, Liu S (2020) Modeling and estimation of hole-type flaws on cracking mechanism of SiC ceramics under uniaxial compression: a 2D DEM simulation. Theor Appl Fract Mec 105:102398

    Google Scholar 

  53. Stanley HE, Ostrowsky N (1988) Random fluctuations and pattern growth: experiments and models. Springer, Dordrecht

    Google Scholar 

  54. André D, Iordanoff I, J-l C, Néauport J (2012) Discrete element method to simulate continuous material by using the cohesive beam model. Comput Methods Appl Mech Eng 213-216:113–125

    MATH  Google Scholar 

  55. Jebahi M, André D, Terreros I, Iordanoff I (2015) Discrete element modeling of brittle fracture. Discrete element method to model 3D continuous materials:115–139

  56. Leclerc W (2019) Effect of packing characteristics on the simulation of elasticity and brittle fracture by the cohesive discrete element method. Granul Matter 21(2)

  57. Thornton C (1979) The conditions for failure of a face-centered cubic array of uniform rigid spheres. Geotechnique 29(4):441–459

    Google Scholar 

  58. Wang Y, Mora P (2008) Macroscopic elastic properties of regular lattices. J Mech Phys Solids 56:3459–3474

    MathSciNet  MATH  Google Scholar 

  59. Potapov A, Campbell C, Hopkins M (1995) A two-dimensional dynamic simulation of solid fracture part I: description of the model. Int J Modern Phys C 6(3):371–398

    Google Scholar 

  60. Chang C, Gao J (1996) Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech Sinica 115(1–4):213–229

    MATH  Google Scholar 

  61. Chang S, Ma L (1992) Elastic material constants for isotropic granular solids with particle rotation. Int J Solids Struct 29:1001–1018

    MATH  Google Scholar 

  62. Jiang S, Ye Y, Li X, Liu S, Liu J, Yang D, Tan Y (2019) DEM modeling of crack coalescence between two parallel flaws in SiC ceramics. Ceram Int 45(12):14997–15014

    Google Scholar 

  63. Nguyen T-T, André D, Huger M (2019) Analytic laws for direct calibration of discrete element modeling of brittle elastic media using cohesive beam model. Comput Part Mech 6(3):393–409

    Google Scholar 

  64. Xia L, Zeng Y (2018) Parametric study of smooth joint parameters on the mechanical behavior of transversely isotropic rocks and research on calibration method. Comput Geotech 98:1–7

    Google Scholar 

  65. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min 44(6):871–889

    Google Scholar 

  66. Hanley KJ, O'Sullivan C, Oliveira JC, Cronin K, Byrne EP (2011) Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol 210(3):230–240

    Google Scholar 

  67. Qu T, Feng Y, Wang M, Jiang S (2020) Calibration of parallel bond parameters in bonded particle models via physics-informed adaptive moment optimisation. Powder Technol 366:527–536

    Google Scholar 

  68. Chen R, Li J, Qian Y, Peng R, Jiang S, Hu C, Zhao Z (2019) An effective inverse procedure for identifying DEM parameters of rock-like materials. Math Probl Eng 2019:1–13

    Google Scholar 

  69. Li X, Jiang S, Ye Y, Liu S, Xu Z, Tan Y, Yang D (2018) Influence of random pore defects on failure mode and mechanical properties of SiC ceramics under uniaxial compression using discrete element method. Ceram Int 44(18):22271–22282

    Google Scholar 

  70. Ma Y, Huang H (2018) DEM analysis of failure mechanisms in the intact Brazilian test. Int J Rock Mech Min Sci 102:109–119

    Google Scholar 

  71. Ghasemi M, Falahatgar S (2019) Damage evolution in brittle coating/substrate structures under three-point bending using discrete element method. Surf Coat Technol 358:567–576

    Google Scholar 

  72. Yang S, Huang Y, Ranjith PG, Jiao Y, Ji J (2015) Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression. Acta Mech Sinica 31(6):871–889

    MathSciNet  MATH  Google Scholar 

  73. Estay D, Chacana F, Ibarra J, Pérez L, Lascano S (2017) Bond calibration method for Young’s modulus determination in the discrete element method framework. Granul Matter 19(3)

  74. Peng R, Tong J, Tang X, Chen R, Jiang S (2020) Crack propagation and wear estimation of ceramic tool in cutting inconel 718 based on discrete element method. Tribol Int:142

  75. Fakhimi A, Villegas T (2006) Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech Rock Eng 40(2):193–211

    Google Scholar 

  76. Goodman, Richard E (1989) Introduction to rock mechanics, vol 2. Wiley New York

  77. Shi C, Yang W, Yang J, Chen X (2019) Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granul Matter 21(2)

  78. Tan Y, Yang D, Sheng Y (2008) Study of polycrystalline Al2O3 machining cracks using discrete element method. Int J Mach Tools Manuf 48(9):975–982

    Google Scholar 

  79. Behraftar S, Galindo Torres S, Scheuermann A, Williams D, Marques E, Janjani Avarzaman H (2017) A calibration methodology to obtain material parameters for the representation of fracture mechanics based on discrete element simulations. Comput Geotech 81:274–283

    Google Scholar 

  80. Liu S, Lu S, Wan Z, Cheng J (2019) Investigation of the influence mechanism of rock damage on rock fragmentation and cutting performance by the discrete element method. R Soc Open Sci 6(5):190116

    Google Scholar 

  81. Tan Y, Zhang H, Li M (2011) Discrete element simulation of abrasive motion characteristics in chemical mechanical polishing. China Mech Eng 22(05):597–603 (in Chinese)

    Google Scholar 

  82. Jiang S, Tan Y, Yang D, Sheng Y (2010) Discrete element simulation of residual stress in ultra-precision machining of silicon carbide single point diamond. J Chin Ceram Soc 38(05):918–923+930 (in Chinese)

    Google Scholar 

  83. Moon T, Oh J (2012) A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method. Rock Mech Rock Eng

  84. Jiang S, Li T, Liu H, Tan Y, Gao W, Zhang G (2015) Modeling and processing damage prediction of coated carbide tools based on discrete element method. China J Comput Mech 32(05):668–673 (in Chinese)

    Google Scholar 

  85. Groh U, Konietzky H, Walter K, Herbst M (2011) Damage simulation of brittle heterogeneous materials at the grain size level. Theor Appl Fract Mech 55(1):31–38

    Google Scholar 

  86. Han X (2014) Investigation of the surface generation mechanism of mechanical polishing engineering ceramics using discrete element method. Appl Phys A-Mater Sci Process 116(4):1729–1739

    Google Scholar 

  87. Wang C, Fang Q, Chen J, Liu Y, Jin T (2016) Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process. Int J Adv Manuf Technol 83(5–8):937–948

    Google Scholar 

  88. Wang T, Xie L, Wang X (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol 79(5–8):1185–1194

    Google Scholar 

  89. Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Met 37(13):1913–1929

    Google Scholar 

  90. Li X, Wang S, Ge S, Reza M, Li Z (2018) Investigation on the influence mechanism of rock brittleness on rock fragmentation and cutting performance by discrete element method. Measurement 113:120–130

    Google Scholar 

  91. Zhu X, Luo Y, Liu W (2019) The rock breaking and ROP increase mechanisms for single-tooth torsional impact cutting using DEM. Pet Sci 16(5):1134–1147

    Google Scholar 

  92. Shen X, Yang B, Lei S (2010) Distinct element modeling of laser assisted milling of silicon nitride ceramics. J Manuf Process 12(1):30–37

    Google Scholar 

  93. Wu H, Sun Q, Zuo D (2013) Simulation of fully sintering dental zirconia milling process based on discrete element method. Key Eng Mater 568:49–54

    Google Scholar 

  94. Blaineau P, André D, Laheurte R, Darnis P, Darbois N, Cahuc O, Neauport J (2015) Subsurface mechanical damage during bound abrasive grinding of fused silica glass. Appl Surf Sci 353:764–773

    Google Scholar 

  95. Godino L, Pombo I, Girardot J, Sanchez JA, Iordanoff I (2020) Modelling the wear evolution of a single alumina abrasive grain: analyzing the influence of crystalline structure. J Mater Process Technol 277:116464

    Google Scholar 

  96. Iordanoff I, Battentier A, Neauport J, Charles J (2008) A discrete element model to investigate sub-surface damage due to surface polishing. Tribol Int 41(11):957–964

    Google Scholar 

  97. Wu J, Li D, Zhu B, Wu C (2018) Milling process simulation of old asphalt mixture by discrete element. Constr Build Mater 186:996–1004

    Google Scholar 

  98. Zhao X, Zheng P, He L, Tao M (2020) Cutting edge preparation using the discrete element software EDEM. J Braz Soc Mech Sci Eng 42(4):163

    Google Scholar 

  99. Jiang S, He M, Li X, Tan Y, Gao F, Xu Z (2018) A discrete element modeling method for grinding wheel considering the shape and distribution randomness of abrasive particles. China patent CN108687683A, 2018.10

  100. Nouari M, Iordanoff I (2007) Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloys. Tribol Int 40(9):1351–1359

    Google Scholar 

  101. Roostai H, Movahhedy MR (2019) Dynamic modeling of the turning process of slip-cast fused silica ceramics using the discrete element method. Proc Inst Mech Eng B-J Eng Manuf 234(3):629–640

    Google Scholar 

  102. Tan Y, Zhang C, Jiang S, Feng YT (2019) Simulation of ceramic grinding mechanism based on discrete element method. Int J Comput Methods 16(04):1843008

    MATH  Google Scholar 

  103. Wang Z, Zhu Y, Li X, Zhu L, Li J, Su J, Zuo D (2017) Average cutting depth and subsurface damage of spinel induced by lapping with fixed abrasive pad. Chin Ceram Soc 45(03):402–409 (in Chinese)

    Google Scholar 

  104. Du H, Gu M, Gu T, Zhao B (2018) Discrete element simulation and experimental analysis of milling of Al2O3/TiC ceramic materials. Tool Technol 52(04):41–44 (in Chinese)

    Google Scholar 

  105. Zhang XH, Chen GY, An WK, Deng ZH, Zhou ZX (2014) Experimental investigations of machining characteristics of laser-induced thermal cracking in alumina ceramic wet grinding. Int J Adv Manuf Technol 72(9–12):1325–1331

    Google Scholar 

  106. Li H, Yu T, Zhu L, Wang W (2015) Modeling and simulation of grinding wheel by discrete element method and experimental validation. Int J Adv Manuf Technol 81(9–12):1921–1938

    Google Scholar 

  107. Li Z, Zhang F, Luo X, Chang W, Cai Y, Zhong W, Ding F (2019) Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization. J Eur Ceram Soc 39(4):705–717

    Google Scholar 

  108. Pan J, Zhang X, Yan Q, Chen S (2016) Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel. Int J Adv Manuf Technol 89(1–4):619–627

    Google Scholar 

  109. Chen Y, Li P (2008) Research on CMP technology of high accuracy glass optics. Acta Phontonica Sinica 37(12):2499–2503 (in Chinese)

    Google Scholar 

  110. Shen L, Wan Y, Meng K, Huang C (2015) FEM/SPH simulation research and experiment of surface roughness based on traditional polishing process. Opt Rev 22(3):393–401

    Google Scholar 

  111. Liu D, Yan R, Chen T (2017) Material removal model of ultrasonic elliptical vibration-assisted chemical mechanical polishing for hard and brittle materials. Int J Adv Manuf Technol 92(1–4):81–99

    Google Scholar 

  112. Liu X, Liang Z, Wen G, Yuan X (2019) Waterjet machining and research developments: a review. Int J Adv Manuf Technol 102(5–8):1257–1335

    Google Scholar 

  113. Balamurugan K, Uthayakumar M, Sankar S, Hareesh US, Warrier KGK (2018) Effect of abrasive waterjet machining on LaPO4/Y2O3 ceramic matrix composite. J Aust Ceram Soc 54(2):205–214

    Google Scholar 

  114. Kim J, Lee S, Suh J (2011) Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters. J Mech Sci Technol 25(4):995–1001

    Google Scholar 

  115. Banik SR, Kalita N, Gajrani KK, Kumar R, Sankar MR (2018) Recent trends in laser assisted machining of ceramic materials. Mater Today: Proceedings 5(9):18459–18467

    Google Scholar 

  116. Zhang Q, Wang C, Liu Y, Zhang L, Cheng G (2015) Picosecond laser machining of deep holes in silicon infiltrated silicon carbide ceramics. J Wuhan Univ Technol-Mat Sci Edit 30(3):437–441

    Google Scholar 

  117. Yang B, Shen X, Lei S (2009) Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics. Int J Mach Tools Manuf 49(3–4):344–350

    Google Scholar 

  118. Kizaki T, Ito Y, Tanabe S, Kim Y, Sugita N, Mitsuishi M (2016) Laser-assisted machining of zirconia ceramics using a diamond bur. Procedia CIRP 42:497–502

    Google Scholar 

  119. Abdo BMA, Ahmed N, El-Tamimi AM, Anwar S, Alkhalefah H, Nasr EA (2019) Laser beam machining of zirconia ceramic: an investigation of micro-machining geometry and surface roughness. J Mech Sci Technol 33(4):1817–1831

    Google Scholar 

  120. Yao Y, Chen Q, Wang J, Chen X, Yuan G (2018) Silicon nitride ceramic water jet assisted laser precision machining. Opt Precis Eng 26(11):2723–2731 (in Chinese)

    Google Scholar 

  121. Song X, Yang J, Ren H, Lin B, Nakanishi Y, Yin L (2018) Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics. Int J Adv Manuf Technol 96(1–4):387–399

    Google Scholar 

  122. Yuan S, Li Z, Zhang C, Guskov A (2017) Research into the transition of material removal mechanism for C/SiC in rotary ultrasonic face machining. Int J Adv Manuf Technol 95(5–8):1751–1761

    Google Scholar 

  123. Zhang J, Li H, Zhang M, Zhao Y, Wang L (2016) Study on force modeling considering size effect in ultrasonic-assisted micro-end grinding of silica glass and Al2O3 ceramic. Int J Adv Manuf Technol 89(1–4):1173–1192

    Google Scholar 

  124. Liu J, Baek D, Ko T (2014) Chipping minimization in drilling ceramic materials with rotary ultrasonic machining. Int J Adv Manuf Technol 72(9–12):1527–1535

    Google Scholar 

  125. Peng Y, Liang Z, Wu Y, Guo Y, Wang C (2011) Effect of vibration on surface and tool wear in ultrasonic vibration-assisted scratching of brittle materials. Int J Adv Manuf Technol 59(1–4):67–72

    Google Scholar 

  126. Gan J, Wang X, Zhou M (2003) Ultra precision diamond turning of glass with ultrasonic vibration. Int J Adv Manuf Technol 21(12):952–955

    Google Scholar 

  127. Wang X, Zhou M, Gan J, Ngo B (2002) Theoretical and experimental studies of ultraprecision machining of brittle materials with ultrasonic vibration. Int J Adv Manuf Technol 20:99–102

    Google Scholar 

  128. Chiang K (2007) Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic. Int J Adv Manuf Technol 37(5–6):523–533

    Google Scholar 

  129. Sung J, Kim K, Kang M (2016) Effects of graphene nanoplatelet contents on material and machining properties of GNP-dispersed Al2O3 ceramics for micro-electric discharge machining. Int J Precis Eng Manuf-Green Technol 3(3):247–252

    Google Scholar 

  130. Patel KM, Pandey P, Rao P (2009) Optimisation of process parameters for multi-performance characteristics in EDM of Al2O3 ceramic composite. Int J Adv Manuf Technol 47(9–12):1137–1147

    Google Scholar 

  131. Pachaury Y, Tandon P (2017) An overview of electric discharge machining of ceramics and ceramic based composites. J Manuf Process 25:369–390

    Google Scholar 

  132. Mohammed N, Nilesh G (2018) A perspective on shaping of advanced ceramics by electro discharge machining. Procedia Manuf 20:65–72

    Google Scholar 

  133. Liu Z, Chen H, Yu J, Pan H (2015) Machining characteristics of hard and brittle insulating materials with mist-jetting electrochemical discharge. Int J Adv Manuf Technol 79(5–8):815–822

    Google Scholar 

  134. Rojek J (2014) Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput Part Mech 1(1):71–84

    Google Scholar 

  135. Su O, Ali Akcin N (2011) Numerical simulation of rock cutting using the discrete element method. Int J Rock Mech Min 48(3):434–442

    Google Scholar 

  136. Liu W, Zhu X, Jing J (2018) The analysis of ductile-brittle failure mode transition in rock cutting. J Pet Sci Eng 163:311–319

    Google Scholar 

  137. Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Method Appl M 193(193):3087–3128

    MATH  Google Scholar 

  138. Gong Q, Zhao J, Jiao Y (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Sp Tech 20(2):183–191

    Google Scholar 

  139. Jiang S, Tan Y, Zhang G, Peng R, Yang D (2010) DEM simulation and experimental investigation of silicon carbide on pre-stressed machining. Adv Mater Res:241–245

  140. Yang G, Alkotami H, Lei S (2020) Discrete element simulation of orthogonal machining of soda-lime glass with seed cracks. J Manuf Mater Process 4(1)

  141. Wu H, Sun Q, Zuo D (2013) Simulation of fully sintering dental zirconia milling process based on discrete element method. In: Key Eng Mater. Trans Tech Publ, pp 49–54

  142. Qiu Y, Gu M, Zhang F, Wei Z (2014) Influence of tool inclination on micro-ball-end milling of quartz glass. Mater Manuf Process 29(11–12):1436–1440

    Google Scholar 

  143. Li H, Yu T, Zhu L, Wang W (2015) Analysis of loads on grinding wheel binder in grinding process: insights from discontinuum-hypothesis-based grinding simulation. Int J Adv Manuf Technol 78(9–12):1943–1960

    Google Scholar 

  144. Ye Y, Xu X (2009) Discrete element analysis and experimental validation of forces in grinding of granite with single diamond grain. Tribol 29(03):215–220

    Google Scholar 

  145. Kang L, Ye Y (2013) Discrete element method simulation of residual stresses in grinding of granite with single diamond grain. Appl Mech Mater 300-301:1304–1308

    Google Scholar 

  146. André D, Iordanoff I, Charles J-L, Néauport J (2012) A quantitative discrete element model to investigate sub-surface damage due to surface polishing. In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp 577–585. https://doi.org/10.1115/esda2012-82509

    Chapter  Google Scholar 

  147. Ji S, Ge J, Gao T, Tan D, Chen G, Li C (2018) Study on machinability of surface-constrained softness abrasive flow based on CFD-DEM coupled method. Aust J Mech Eng 54(5):129–141 (in Chinese)

    Google Scholar 

  148. Tan Y, Yang D, Li C, Sheng Y (2008) Discrete element method simulation of cracks in monocrystalline silicon machining process. China Mech Eng 21:2545–2548+2581 (in Chinese)

    Google Scholar 

  149. Merchant E (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275

    Google Scholar 

  150. Hou X (2017) Experimental study on ultrasonic milling of ceramic materials. J Shenyang Ligong Univ 36(05):95–97+102 (in Chinese)

    Google Scholar 

  151. Osa JL, Ortega N, Vidal G, Fernandez-Gauna B, Carballo A, Tolosa I (2018) Future of the discrete element method in the modelling of grinding wheels. Eng Comput 35(6):2255–2271

    Google Scholar 

  152. Osa JL, Sánchez J, Ortega N, Iordanoff I, Charles J (2016) Discrete-element modelling of the grinding contact length combining the wheel-body structure and the surface-topography models. Int J Mach Tools Manuf 110:43–54

    Google Scholar 

  153. Khanal M, Morrison R (2008) Discrete element method study of abrasion. Miner Eng 21(11):751–760

    Google Scholar 

  154. André D, Charles J, Iordanoff I, Néauport J (2014) The GranOO workbench, a new tool for developing discrete element simulations, and its application to tribological problems. Adv Eng Softw 74:40–48

    Google Scholar 

  155. Arif M, Rahman M, San W (2011) Ultraprecision ductile mode machining of glass by micromilling process. J Manuf Process 13:50–59

    Google Scholar 

  156. Marinscu ID, Doi TK, Uhlmann E (2015) Handbook of ceramics grinding and polishing. William Andrew

  157. Iordanoff I, Charles JL, Berthier Y (2007) Discrete element model: a helpful tool for abrasion process study. Proc Inst Mech Eng B-J Eng Manuf 221(6):1031–1039

    Google Scholar 

  158. Nassauer B, Liedke T, Kuna M (2016) Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles. Comput Mech 3(1):95–106

    Google Scholar 

  159. Zhu Y, Li X, Wang Z, Lin S (2017) Subsurface damage prediction for optical hard-brittle materials in fixed abrasive lapping. Opt Precis Eng 25(02):367–374 (in Chinese)

    Google Scholar 

  160. Zhang X, Li J, Hu J, Zhao W (2017) The research of polishing nozzle quality based on discrete element method. J Meas Eng 5(1):29–39

    Google Scholar 

  161. Xiu T, Wang W, Liu K, Wang Z, Wei D (2018) Characteristics of force chains in frictional interface during abrasive flow machining based on discrete element method. Adv Manuf 6(4):355–375

    Google Scholar 

  162. Ji R, Liu Y, Zhang Y, Wang F, Cai B, Li H (2012) Compound machining of silicon carbide ceramics by high speed end electrical discharge milling and mechanical grinding. Chin Sci Bull 57(4):421–434

    Google Scholar 

  163. Abdo BA, Anwar S, El-Tamimi A (2019) Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining. J Manuf Process 43:175–191

    Google Scholar 

  164. Shen J, Wang J, Jiang B, Xu X (2015) Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic. Wear 332-333:788–793

    Google Scholar 

  165. Liao Y, Garg N, Martins JRA, Young Y (2019) Viscous fluid–structure interaction response of composite hydrofoils. Compos Struct 212:571–585

    Google Scholar 

  166. Yue J, Liu GR, Li M, Niu R (2019) An edge-based smoothed finite element method for wave scattering by an obstacle in elastic media. Eng Anal Bound Elem 101:121–138

    MathSciNet  MATH  Google Scholar 

  167. Li Z, Cui X, Cai Y (2018) Analysis of heat transfer problems using a novel low-order FEM based on gradient weighted operation. Int J Therm Sci 132:52–64

    Google Scholar 

  168. Pradhan S, Siddque T (2020) Stability assessment of landslide-prone road cut rock slopes in Himalayan terrain: a finite element method based approach. J Rock Mech Geotech Eng 12(1):59–73

    Google Scholar 

  169. Oñate E, Zárate F, Celigueta MA, González JM, Miquel J, Carbonell JM, Arrufat F, Latorre S, Santasusana M (2018) Advances in the DEM and coupled DEM and FEM techniques in non linear solid mechanics. In: Advances in Computational Plasticity. Computational Methods in Applied Sciences. pp. 309–335

  170. Liu S, Wang F, Guo Z, Yin F (2019) Simulation of high-speed rubbing process of marble based on finite element/discrete element coupling. Diam Abras Eng 39(01):95–100 (in Chinese)

    Google Scholar 

  171. Labra C, Rojek J, Oñate E (2017) Discrete/finite element modelling of rock cutting with a TBM disc cutter. Rock Mech Rock Eng 50(3):621–638

    Google Scholar 

  172. Chen Z, Jin X, Wang M (2018) A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. J Mech Phys Solids 116:54–69

    MathSciNet  Google Scholar 

  173. Leclerc W, Haddad H, Guessasma M (2019) DEM-FEM coupling method to simulate thermally induced stresses and local damage in composite materials. Int J Solids Struct 160:276–292

    Google Scholar 

  174. Yu Y, Tang H (2013) Finite element/discrete element coupling analysis method and its engineering application. J Shanghai Jiaotong Univ 47(10):1611–1615 (in Chinese)

    Google Scholar 

  175. Yan J, Tang Z (2003) Multi-scale method combining discrete element and finite element and its application. Chin J Comput Phys 06:477–482 (in Chinese)

    Google Scholar 

  176. Almohammed N, Alobaid F, Breuer M, Epple B (2014) A comparative study on the influence of the gas flow rate on the hydrodynamics of a gas–solid spouted fluidized bed using Euler–Euler and Euler–Lagrange/DEM models. Powder Technol 264:343–364

    Google Scholar 

  177. Sommerfeld M (1998) Modelling and numerical calculation of turbulent gas-solids flows with the Euler/Lagrange approach. KONA Powder J 16:194–206

    Google Scholar 

  178. Chu K, Wang B, Xu D, Chen Y, Yu A (2011) CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chem Eng Sci 66(5):834–847

    Google Scholar 

  179. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250

    Google Scholar 

  180. Choi D, Park S, Han J, Ahn M, Lee Y, Park Y, Cho S, Sohn D (2019) A DEM-CFD study of the effects of size distributions and packing fractions of pebbles on purge gas flow through pebble beds. Fus Eng Des 143:24–34

    Google Scholar 

  181. Al-Arkawazi S, Marie C, Benhabib K, Coorevits P (2017) Modeling the hydrodynamic forces between fluid–granular medium by coupling DEM–CFD. Chem Eng Res Des 117:439–447

    Google Scholar 

  182. Li J, Suning N, Hu J, Yang Z, Sheng L, Zhang X (2018) Numerical analysis and experiment of micro-hole processing of abrasive flow based on CFD-DEM coupling. Trans Chin Soc Agric Eng 34(16):80–88+299 (in Chinese)

    Google Scholar 

  183. Paul WC (2015) Prediction of coupled particle and fluid flows using DEM and SPH. Miner Eng 73:85–99

    Google Scholar 

  184. Komoróczi A, Abe S, Urai JL (2013) Meshless numerical modeling of brittle–viscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH). Comput Geosci 17(2):373–390

    MathSciNet  MATH  Google Scholar 

  185. Markauskas D, Kruggel-Emden H, Scherer V (2018) Numerical analysis of wet plastic particle separation using a coupled DEM-SPH method. Powder Technol 325:218–227

    Google Scholar 

  186. Robinson M, Ramaioli M, Luding S (2014) Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation. Int J Multiphase Flow 59:121–134

    Google Scholar 

  187. Sun X, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method. J Comput Phys 248:147–176

    MathSciNet  MATH  Google Scholar 

  188. Wu K, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161

    Google Scholar 

  189. Xu W, Dong X, Ding W (2019) Analysis of fluid-particle interaction in granular materials using coupled SPH-DEM method. Powder Technol 353:459–472

    Google Scholar 

  190. Wang Z, Li D (2017) Simulation of landslide surge based on SPH-DEM fluid-solid coupling algorithm. Rock Soil Mech 38(04):1226–1232 (in Chinese)

    Google Scholar 

  191. Wu Z, Yu F, Zhang P, Liu X (2019) Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with Voronoi grains. Eng Anal Bound Elem 108:472–483

    MathSciNet  MATH  Google Scholar 

  192. Menezes P (2016) Influence of cutter velocity, friction coefficient and rake angle on the formation of discontinuous rock fragments during rock cutting process. Int J Adv Manuf Technol 90(9–12):3811–3827

    Google Scholar 

  193. Hu H, Huang W (2013) Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int J Adv Manuf Technol 69(1):31–39

    MathSciNet  Google Scholar 

  194. Mi Z, Liang Z, Wang X, Zhou T, Zhao W, Tian M (2015) Simulation research on grinding force of single abrasive ultrasonic-assisted grinding of ceramic materials based on smooth particle hydrodynamics. Acta Armamentarii 36(06):1067–1073 (in Chinese)

    Google Scholar 

  195. Cao J, Wu Y, Li J, Zhang Q (2016) Study on the material removal process in ultrasonic-assisted grinding of SiC ceramics using smooth particle hydrodynamic (SPH) method. Int J Adv Manuf Technol 83(5):985–994

    Google Scholar 

  196. Bencheikh I, Nouari M, Bilteryst F (2019) Multi-step simulation of multi-coated tool wear using the coupled approach XFEM/multi-level-set. Tribol Int 146:18

    Google Scholar 

  197. Zhai C, Wang X, Kong J, Li S, Xie L (2017) A sophisticated simulation for the fracture behavior of concrete material using XFEM. Earthq Eng Eng Vib 16(4):859–881

    Google Scholar 

  198. Dong X, Shin Y (2018) Crack formation within ceramics via coupled multiscale genome and XFEM predictions under various loading conditions. Eng Fract Mech 204:517–530

    Google Scholar 

  199. Yang L, Shihai L, Xiaoyu L (2011) Double medium seepage stress coupling model based on discrete element of continuous medium. Chin J Rock Mech Eng 30(05):951–959 (in Chinese)

    Google Scholar 

  200. Chen L, Chen Y, Huang K, Liu S (2016) Investigation of effective thermal conductivity for pebble beds by one-way coupled CFD-DEM method for CFETR WCCB. Fusion Eng Des 106:1–8

    Google Scholar 

  201. Yang X, Zhang B (2019) Material embrittlement in high strain-rate loading. Int J Extreme Manuf 1(2):022003

    Google Scholar 

  202. Du H, Dai F, Xu Y, Liu Y, Xu H (2018) Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing. Int J Rock Mech Min Sci 108:43–57

    Google Scholar 

  203. Bažant Z, Chen E (1997) Scaling of structural failure. Appl Mech Rev 50(10):593–627

    Google Scholar 

  204. Han G, Liu K, Wang X (2006) Mechanical properties and size effects of single crystal silicon. China J Mech Eng(English edition) 19:290–293

    Google Scholar 

  205. Jiang S, Tan Y, Li C, Yang D (2010) Study on mechanics properties and size effect of monocrystalle silicon using discrete element method. China. Mech Eng 21(05):589–594 (in Chinese)

    Google Scholar 

  206. Di S, Xue Y, Bai X, Wang Q (2018) Effects of model size and particle size on the response of sea-ice samples created with a hexagonal-close-packing pattern in discrete-element method simulations. Particuology 36:106–113

    Google Scholar 

  207. Suchorzewski J, Tejchman J, Nitka M, Bobinski J (2019) Meso-scale analyses of size effect in brittle materials using DEM. Granul Matter 21(1):1–19

    Google Scholar 

  208. Lou Y, Zhu H, Cao H (2000) Hypothesis of interior stress and size effect of mechanical parameters of brittle materials (III). J North China Inst Water Conservancy Hydroelectric Power 01:35–38 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC projects of China (51605409, 11772135, 51975504, 51705442), the Scientific Research Fund of Hunan Province Education Department (18B074, 18C0092), and the Hunan Science and Technology Achievements Transformation and Industrialization Plan (2019GK4025). The authors are grateful for the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengqiang Jiang or Yuanqiang Tan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Tang, C., Li, X. et al. Discrete element modeling of the machining processes of brittle materials: recent development and future prospective. Int J Adv Manuf Technol 109, 2795–2829 (2020). https://doi.org/10.1007/s00170-020-05792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05792-y

Keywords

Navigation