Skip to main content
Log in

Investigation of ultrasonic vibration effects on the microstructure and hardness of aluminum alloy 2024 tube spinning parts

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tube spinning process, also known as flow forming, is one of the manufacturing methods in production of seamless tubes. During the tube spinning process, the workpiece was excited by ultrasonic vibrations. The authors’ last research was focused on variation of forming forces and surface effects of tube spinning parts under ultrasonic vibrations. In the present study, the effects of ultrasonic vibrations on mechanical and metallurgical properties of AA 2024 workpieces were investigated. In fact, different characteristics of the workpiece in the presence and absence of ultrasonic vibrations were evaluated. The results of microstructure and microhardness tests revealed that in the presence of ultrasonic vibrations, precipitate formation was reduced. Also, precipitate shape and distribution through microstructure, particularly near the outer surface up to 2 mm depth, was changed. In addition, applying ultrasonic vibrations not only increased the hardness and the depth of hardened layers but also improved the uniformity of hardness profile across the thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rasoli MA, Abdullah A, Farzin M, Tehrani AF, Taherizadeh A (2012) Influence of ultrasonic vibrations on tube spinning process. J Mater Process Technol 212(6):1443–1452. doi:10.1016/j.jmatprotec.2012.02.006

    Article  Google Scholar 

  2. Djavanroodi F, Ahmadian H, Koohkan K, Naseri R (2013) Ultrasonic assisted-ECAP. Ultrasonics 53(6):1089–1096. doi:10.1016/j.ultras.2013.02.003

    Article  Google Scholar 

  3. Jiang S-y, Zheng Y-f, Ren Z-y, Li C-f (2009) Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs. Trans Nonferrous Metals Soc China 19(1):215–221. doi:10.1016/S1003-6326(08)60255-1

    Article  Google Scholar 

  4. Blaha F, Langenecker B (1955) Dehnung von Zink-Kristallen unter Ultraschalleinwirkung (Elongation of Zinc Monocrystals Under Ultrasonic Action). Naturwissenschaften 42(20):556–556. doi:10.1007/BF00623773

  5. Hung J-C, Lin C-C (2013) Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting. Mater Des 45:412–420. doi:10.1016/j.matdes.2012.07.021

    Article  Google Scholar 

  6. Daud Y, Lucas M, Huang Z (2007) Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. J Mater Process Technol 186(1–3):179–190. doi:10.1016/j.jmatprotec.2006.12.032

    Article  Google Scholar 

  7. Siddiq A, El Sayed T (2011) Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM. Mater Lett 65(2):356–359. doi:10.1016/j.matlet.2010.10.031

    Article  Google Scholar 

  8. Hung J-C, Hung C (2005) The influence of ultrasonic-vibration on hot upsetting of aluminum alloy. Ultrasonics 43(8):692–698. doi:10.1016/j.ultras.2005.03.001

    Article  Google Scholar 

  9. Liu Y, Suslov S, Han Q, Xu C, Hua L (2012) Microstructure of the pure copper produced by upsetting with ultrasonic vibration. Mater Lett 67(1):52–55. doi:10.1016/j.matlet.2011.08.086

    Article  Google Scholar 

  10. Ting W, Dongpo W, Gang L, Baoming G, Ningxia S (2008) Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci 255(5, Part 1):1824–1829. doi:10.1016/j.apsusc.2008.06.034

    Article  Google Scholar 

  11. Wang X, Wang J, Wu P, Zhang H (2004) The investigation of internal friction and elastic modulus in surface nanostructured materials. Mater Sci Eng A 370(1–2):158–162. doi:10.1016/j.msea.2003.02.002

    Article  Google Scholar 

  12. Ashida Y, Aoyama H (2007) Press forming using ultrasonic vibration. J Mater Process Technol 187–188:118–122. doi:10.1016/j.jmatprotec.2006.11.174

    Article  Google Scholar 

  13. Nazarova AA, Mulyukov RR, Rubanik VV, Tsarenko YV, Nazarov AA (2010) Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel. Phys Met Metallogr 110(6):574–581. doi:10.1134/s0031918x10120082

    Article  Google Scholar 

  14. Wen T, Wei L, Chen X, C-l P (2011) Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process. Int J Miner Metall Mater 18(1):70–76. doi:10.1007/s12613-011-0402-4

    Article  Google Scholar 

  15. Mordyuk BN, Prokopenko GI (2007) Ultrasonic impact peening for the surface properties’ management. J Sound Vib 308(3–5):855–866. doi:10.1016/j.jsv.2007.03.054

    Article  Google Scholar 

  16. Amanov A, Cho IS, Pyoun YS, Lee CS, Park IG (2012) Micro-dimpled surface by ultrasonic nanocrystal surface modification and its tribological effects. Wear 286–287:136–144. doi:10.1016/j.wear.2011.06.001

    Article  Google Scholar 

  17. Lianxi H, Zuyan L, Erde W (2002) Microstructure and mechanical properties of 2024 aluminum alloy consolidated from rapidly solidified alloy powders. Mater Sci Eng A 323(1–2):213–217. doi:10.1016/S0921-5093(01)01348-X

    Article  Google Scholar 

  18. Charikov NI, Ketov VP, Dudorov NS (1988) Relaxation of internal stresses and redistribution of carbon atoms in steel samples in the field of elastic vibrations. Fiz Met Metalloved 65(2):341–347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrshad Moshref-javadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasooli, M., Moshref-javadi, M. & Taherizadeh, A. Investigation of ultrasonic vibration effects on the microstructure and hardness of aluminum alloy 2024 tube spinning parts. Int J Adv Manuf Technol 77, 2117–2124 (2015). https://doi.org/10.1007/s00170-014-6500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6500-5

Keywords

Navigation