Skip to main content
Log in

Lateral–medial asymmetry of posterior tibial slope and small lateral tibial plateau articular surface depth are morphological factors of lateral meniscus posterior root tears in ACL-injured patients

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate whether knee morphological features, patient characteristics, and intraoperative findings are associated with a lateral meniscus (LM) posterior root tear (LMPRT) in anterior cruciate ligament (ACL) injuries with the integrated data from two academic centres.

Methods

This retrospective study used registry data acquired prospectively at two academic centres. Patients with ACL reconstruction (ACLR) with LMPRT and no other LM injury were selected (LMPRT group) from each database. The control group included patients who underwent ACLR without LM tears. Patients were matched to the LMPRT group according to age and gender (1:1). Morphological factors evaluated on preoperative magnetic resonance image scans included lateral femoral condyle (LFC) anterior–posterior diameter, height, and depth; lateral tibial plateau (LTP) articular surface (AS) depth and sagittal plane depth; and lateral and medial posterior tibial slopes (PTSs). LFC height and depth ratios, LTP AS depth and sagittal plane depth ratios, and lateral-to-medial slope asymmetry were computed from previous measurements. Patient characteristics and intraoperative findings were extracted and compared between both groups.

Results

The study included 252 patients (126 in each group). The lateral–medial asymmetry of PTS was greater in the LMPRT group (1.2° vs 0.3°, p < 0.05), and the LTP AS depth was smaller in the LMPRT group (31.4 mm vs 33.2 mm, p < 0.01). There were no differences in LFC morphology between the control and LMPRT groups. Pivot shift grade (p < 0.05), percentage of complete ACL tears (p < 0.05), and medial meniscus ramp lesions (p < 0.05) were significantly higher in the LMPRT group.

Conclusion

LMPRT was associated with significantly increased lateral–medial asymmetry of PTS and significantly smaller LTP AS depth. LMPRT was also associated with an increase in the preoperative pivot shift grade and the presence of a medial meniscus ramp lesion. These morphological characteristics are rather simple to measure and would serve as helpful indicators to preoperatively detect LMPRT, which is frequently challenging to diagnose preoperatively.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahn JH, Lee YS, Yoo JC, Chang MJ, Park SJ, Pae YR (2010) Results of arthroscopic all-inside repair for lateral meniscus root tear in patients undergoing concomitant anterior cruciate ligament reconstruction. Arthroscopy 26:67–75

    Article  PubMed  Google Scholar 

  2. Asai K, Nakase J, Oshima T, Shimozaki K, Toyooka K, Tsuchiya H (2020) Lateral meniscus posterior root tear in anterior cruciate ligament injury can be detected using MRI-specific signs in combination but not individually. Knee Surg Sports Traumatol Arthrosc 28:3094–3100

    Article  PubMed  Google Scholar 

  3. Bernholt D, DePhillipo NN, Aman ZS, Samuelsen BT, Kennedy MI, LaPrade RF (2021) Increased posterior tibial slope results in increased incidence of posterior lateral meniscal root tears in ACL reconstruction patients. Knee Surg Sports Traumatol Arthrosc 29:3883–3891

    Article  PubMed  Google Scholar 

  4. Branch T, Stinton S, Sharma A, Lavoie F, Guier C, Neyret P (2017) The impact of bone morphology on the outcome of the pivot shift test: a cohort study. BMC Musculoskelet Disord 18:463

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899

    Article  PubMed  Google Scholar 

  6. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    Article  Google Scholar 

  7. Cui W, Nakagawa Y, Katagiri H, Otabe K, Ohara T, Shioda M et al (2021) Knee laxity, lateral meniscus tear and distal femur morphology influence pivot shift test grade in ACL injury patients. Knee Surg Sports Traumatol Arthrosc 29:633–640

    Article  PubMed  Google Scholar 

  8. Feucht MJ, Bigdon S, Mehl J, Bode G, Müller-Lantzsch C, Südkamp NP et al (2015) Risk factors for posterior lateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 23:140–145

    Article  PubMed  Google Scholar 

  9. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    Article  PubMed  Google Scholar 

  10. Feucht MJ, Salzmann GM, Bode G, Pestka JM, Kuhle J, Sudkamp NP et al (2015) Posterior root tears of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 23:119–125

    Article  PubMed  Google Scholar 

  11. Forkel P, Herbort M, Sprenker F, Metzlaff S, Raschke M, Petersen W (2014) The biomechanical effect of a lateral meniscus posterior root tear with and without damage to the meniscofemoral ligament: efficacy of different repair techniques. Arthroscopy 30:833–840

    Article  PubMed  Google Scholar 

  12. Forkel P, Reuter S, Sprenker F, Achtnich A, Herbst E, Imhoff A et al (2015) Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system. Knee Surg Sports Traumatol Arthrosc 23:112–118

    Article  PubMed  Google Scholar 

  13. Forkel P, von Deimling C, Lacheta L, Imhoff FB, Foehr P, Willinger L et al (2018) Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee. Knee Surg Sports Traumatol Arthrosc 26:2302–2309

    Article  PubMed  Google Scholar 

  14. Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382

    Article  PubMed  Google Scholar 

  15. Grassi A, Signorelli C, Urrizola F, Raggi F, Macchiarola L, Bonanzinga T et al (2018) Anatomical features of tibia and femur: Influence on laxity in the anterior cruciate ligament deficient knee. Knee 25:577–587

    Article  PubMed  Google Scholar 

  16. Greif DN, Baraga MG, Rizzo MG, Mohile NV, Silva FD, Fox T et al (2020) MRI appearance of the different meniscal ramp lesion types, with clinical and arthroscopic correlation. Skeletal Radiol 49:677–689

    Article  PubMed  Google Scholar 

  17. Gupta R, Singhal A, Sharma AR, Shail S, Masih GD (2021) Strong association of meniscus tears with complete Anterior Cruciate Ligament (ACL) injuries relative to partial ACL injuries. J Clin Orthop Trauma 23:101671

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38:54–62

    Article  PubMed  Google Scholar 

  19. Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234

    Article  CAS  PubMed  Google Scholar 

  20. Hudek R, Schmutz S, Regenfelder F, Fuchs B, Koch PP (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jacquet C, Magosch A, Mouton C, Seil R (2021) The aspiration test: an arthroscopic sign of lateral meniscus posterior horn instability. J Exp Orthop 8:17. https://doi.org/10.1186/s40634-021-00327-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacquet C, Mouton C, Magosch A, Komnos GA, Menetrey J, Ollivier M et al (2021) The aspiration test reveals an instability of the posterior horn of the lateral meniscus in almost one-third of ACL-injured patients. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06806-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kamada K, Matsushita T, Nagai K, Hoshino Y, Araki D, Kanzaki N et al (2022) Risk factors of residual pivot-shift after anatomic double-bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-022-04428-y

    Article  PubMed  Google Scholar 

  24. Kolbe R, Schmidt-Hebbel A, Forkel P, Pogorzelski J, Imhoff AB, Feucht MJ (2019) Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 27:2585–2591

    Article  PubMed  Google Scholar 

  25. Kubota R, Koga H, Ozeki N, Matsuda J, Kohno Y, Mizuno M et al (2020) The effect of a centralization procedure for extruded lateral meniscus on load distribution in porcine knee joints at different flexion angles. BMC Musculoskelet Disord 21:205. https://doi.org/10.1186/s12891-020-03197-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. LaPrade CM, James EW, Cram TR, Feagin JA, Engebretsen L, LaPrade RF (2015) Meniscal root tears: a classification system based on tear morphology. Am J Sports Med 43:363–369

    Article  PubMed  Google Scholar 

  27. Magosch A, Mouton C, Nuhrenborger C, Seil R (2021) Medial meniscus ramp and lateral meniscus posterior root lesions are present in more than a third of primary and revision ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 29:3059–3067

    Article  PubMed  Google Scholar 

  28. Marouane H, Shirazi-Adl A, Hashemi J (2015) Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J Biomech 48:1899–1905

    Article  CAS  PubMed  Google Scholar 

  29. Minami T, Muneta T, Sekiya I, Watanabe T, Mochizuki T, Horie M et al (2018) Lateral meniscus posterior root tear contributes to anterolateral rotational instability and meniscus extrusion in anterior cruciate ligament-injured patients. Knee Surg Sports Traumatol Arthrosc 26:1174–1181

    PubMed  Google Scholar 

  30. Mouton C, Magosch A, Pape D, Hoffmann A, Nuhrenborger C, Seil R (2020) Ramp lesions of the medial meniscus are associated with a higher grade of dynamic rotatory laxity in ACL-injured patients in comparison to patients with an isolated injury. Knee Surg Sports Traumatol Arthrosc 28:1023–1028

    Article  PubMed  Google Scholar 

  31. Nakamura T, Linde MA, Marshall BD, Koga H, Muneta T, Smolinski P et al (2019) Arthroscopic centralization restores residual knee laxity in ACL-reconstructed knee with a lateral meniscus defect. Knee Surg Sports Traumatol Arthrosc 27:3699–3704

    Article  PubMed  Google Scholar 

  32. Okoroha KR, Patel RB, Kadri O, Jildeh TR, Krause A, Gulledge C et al (2019) Abnormal tibial alignment is a risk factor for lateral meniscus posterior root tears in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc 27:590–595

    Article  PubMed  Google Scholar 

  33. Ozeki N, Koga H, Matsuda J, Kohno Y, Mizuno M, Katano H et al (2020) Biomechanical analysis of the centralization procedure for extruded lateral menisci with posterior root deficiency in a porcine model. J Orthop Sci 25:161–166

    Article  PubMed  Google Scholar 

  34. Pan F, Hua S, Ma Z (2015) Surgical treatment of combined posterior root tears of the lateral meniscus and ACL tears. Med Sci Monit 21:1345–1349

    Article  PubMed  PubMed Central  Google Scholar 

  35. Praz C, Vieira TD, Saithna A, Rosentiel N, Kandhari V, Nogueira H et al (2019) Risk factors for lateral meniscus posterior root tears in the anterior cruciate ligament-injured knee: an epidemiological analysis of 3956 patients from the SANTI study group. Am J Sports Med 47:598–605

    Article  PubMed  Google Scholar 

  36. Schillhammer CK, Werner FW, Scuderi MG, Cannizzaro JP (2012) Repair of lateral meniscus posterior horn detachment lesions: a biomechanical evaluation. Am J Sports Med 40:2604–2609

    Article  PubMed  Google Scholar 

  37. Shelbourne KD, Roberson TA, Gray T (2011) Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction. Am J Sports Med 39:1439–1443

    Article  PubMed  Google Scholar 

  38. Shybut TB, Vega CE, Haddad J, Alexander JW, Gold JE, Noble PC et al (2015) Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 43:905–911

    Article  PubMed  Google Scholar 

  39. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M et al (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93:1475–1478

    Article  CAS  PubMed  Google Scholar 

  41. Sonnery-Cottet B, Praz C, Rosenstiel N, Blakeney WG, Ouanezar H, Kandhari V et al (2018) Epidemiological evaluation of meniscal ramp lesions in 3214 anterior cruciate ligament-injured knees From the SANTI study group database: a risk factor analysis and study of secondary meniscectomy rates following 769 ramp repairs. Am J Sports Med 46:3189–3197

    Article  PubMed  Google Scholar 

  42. Sonnery-Cottet B, Saithna A, Cavalier M, Kajetanek C, Temponi EF, Daggett M et al (2017) Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years: a prospective comparative study of 502 patients from the SANTI study group. Am J Sports Med 45:1547–1557

    Article  PubMed  Google Scholar 

  43. Thaunat M, Fayard JM, Guimaraes TM, Jan N, Murphy CG, Sonnery-Cottet B (2016) Classification and surgical repair of ramp lesions of the medial meniscus. Arthrosc Tech 5:e871–e875

    Article  PubMed  PubMed Central  Google Scholar 

  44. Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67

    Article  PubMed  Google Scholar 

  45. Ueki H, Nakagawa Y, Ohara T, Watanabe T, Horie M, Katagiri H et al (2018) Risk factors for residual pivot shift after anterior cruciate ligament reconstruction: data from the MAKS group. Knee Surg Sports Traumatol Arthrosc 26:3724–3730

    Article  PubMed  Google Scholar 

  46. Zappia M, Sconfienza LM, Guarino S, Tumminello M, Iannella G, Mariani PP (2021) Meniscal ramp lesions: diagnostic performance of MRI with arthroscopy as reference standard. Radiol Med 126:1106–1116

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W et al (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22:53–65

    Article  PubMed  Google Scholar 

  48. Zeng C, Yang T, Wu S, Gao SG, Li H, Deng ZH et al (2016) Is posterior tibial slope associated with noncontact anterior cruciate ligament injury? Knee Surg Sports Traumatol Arthrosc 24:830–837

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Miyoko Ojima for management in Tokyo Medical and Dental University, Masayo Tsukamoto for organizing data from Tokyo Medical and Dental University, and Editage (www.editage.com) for English language editing.

Funding

This study received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AY conceived the study, managed data, performed statistical analysis, participated in study design, and wrote the manuscript. RSi managed data, participated in study design and wrote the manuscript. YN and CM participated in study design, advised statistical analysis, interpreted results, and edited the manuscript. CJ, TN and IS participated in study design and interpreted results. RSe and HK had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors read, approved the final manuscript and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Hideyuki Koga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board in Tokyo Medical and Dental University (M2000-2054) in Tokyo and the National Ethics Committee for Research (No. 201101/05 version 1.0) in Luxembourg.

Informed consent

All study participants provided their full written informed consent for participation in this clinical research prior to the operative procedure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 96 kb)

Supplementary file2 (PDF 98 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshihara, A., Siboni, R., Nakagawa, Y. et al. Lateral–medial asymmetry of posterior tibial slope and small lateral tibial plateau articular surface depth are morphological factors of lateral meniscus posterior root tears in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc 31, 3594–3603 (2023). https://doi.org/10.1007/s00167-023-07317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-023-07317-y

Keywords

Navigation