Skip to main content
Log in

Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology.

Methods

The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18–40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°–50°, 50°–40°, 40°–30°, 30°–20°, 20°–10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression.

Results

In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°–50° and 50°–40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume.

Conclusion

Higher quadriceps strength at knee flexion angles of 60°–40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

ACLR:

Anterior cruciate ligament reconstruction

AMI:

Arthrogenic muscle inhibition

BMI:

Body mass index

ICRS:

International Cartilage Repair Society

KOOS:

Knee injury and osteoarthritis outcome score

MRI:

Magnetic resonance imaging

OA:

Osteoarthritis

PFJ:

Patellofemoral joint

STGT:

Semitendinosus and gracilis tendon

TFJ:

Tibiofemoral joint

References

  1. Baumgart C, Welling W, Hoppe MW, Freiwald J, Gokeler A (2018) Angle-specific analysis of isokinetic quadriceps and hamstring torques and ratios in patients after ACL-reconstruction. BMC Sports Sci Med Rehabil 10:23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brown C, Marinko L, LaValley MP, Kumar D (2021) Quadriceps strength after anterior cruciate ligament reconstruction compared with uninjured matched controls: a systematic review and meta-analysis. Orthop J Sports Med 9:2325967121991534

    Article  PubMed  PubMed Central  Google Scholar 

  3. Calvo E, Palacios I, Delgado E, Sanchez-Pernaute O, Largo R, Egido J et al (2004) Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthr Cartil 12:878–886

    Article  CAS  Google Scholar 

  4. Cinque ME, Dornan GJ, Chahla J, Moatshe G, LaPrade RF (2018) High rates of osteoarthritis develop after anterior cruciate ligament surgery: an analysis of 4108 patients. Am J Sports Med 46:2011–2019

    Article  PubMed  Google Scholar 

  5. Eckstein F, Wirth W, Lohmander LS, Hudelmaier MI, Frobell RB (2015) Five-year follow up of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 67:152–161

    Article  CAS  PubMed  Google Scholar 

  6. Everhart JS, Magnussen RA, Abouljoud MM, Regalado LE, Kaeding CC, Flanigan DC (2020) Meniscus tears accelerate joint space loss and lateral meniscal extrusion increases risk of knee arthroplasty in middle-aged adults. J Orthop Res 38:2495–2504

    Article  PubMed  Google Scholar 

  7. Garrison JC, Hannon J, Goto S, Kosmopoulos V, Aryal S, Bush C et al (2019) Knee loading after ACL-R is related to quadriceps strength and knee extension differences across the continuum of care. Orthop J Sports Med 7:2325967119870155

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall AC (2019) The role of chondrocyte morphology and volume in controlling phenotype-implications for osteoarthritis, cartilage repair, and cartilage engineering. Curr Rheumatol Rep 21:38

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasler EM, Herzog W, Leonard TR, Stano A, Nguyen H (1998) In vivo knee joint loading and kinematics before and after ACL transection in an animal model. J Biomech 31:253–262

    Article  CAS  PubMed  Google Scholar 

  10. Huang W, Ong TY, Fu SC, Yung SH (2020) Prevalence of patellofemoral joint osteoarthritis after anterior cruciate ligament injury and associated risk factors: a systematic review. J Orthop Translat 22:14–25

    Article  PubMed  Google Scholar 

  11. Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C et al (2009) Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis 68:349–356

    Article  CAS  PubMed  Google Scholar 

  12. Hyodo K, Masuda T, Aizawa J, Jinno T, Morita S (2017) Hip, knee, and ankle kinematics during activities of daily living: a cross-sectional study. Braz J Phys Ther 21:159–166

    Article  PubMed  PubMed Central  Google Scholar 

  13. Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463

    Article  PubMed  Google Scholar 

  14. Killen BA, Saxby DJ, Fortin K, Gardiner BS, Wrigley TV, Bryant AL et al (2018) Individual muscle contributions to tibiofemoral compressive articular loading during walking, running and sidestepping. J Biomech 80:23–31

    Article  CAS  PubMed  Google Scholar 

  15. Kim JJ, Cho H, Park Y, Jang J, Kim JW, Ryu JS (2020) Biomechanical influences of gait patterns on knee joint: kinematic & EMG analysis. PLoS One 15:e0233593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuenze C, Lisee C, Birchmeier T, Triplett A, Wilcox L, Schorfhaar A et al (2019) Sex differences in quadriceps rate of torque development within 1 year of ACL reconstruction. Phys Ther Sport 38:36–43

    Article  PubMed  Google Scholar 

  17. Lee DW, Yeom CH, Kim DH, Kim TM, Kim JG (2018) Prevalence and predictors of patellofemoral osteoarthritis after anterior cruciate ligament reconstruction with hamstring tendon autograft. Clin Orthop Surg 10:181–190

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li AK, Pedoia V, Tanaka M, Souza RB, Ma CB, Li X (2020) Six-month post-surgical elevations in cartilage T1rho relaxation times are associated with functional performance 2 years after ACL reconstruction. J Orthop Res 38:1132–1140

    Article  PubMed  Google Scholar 

  19. Lien-Iversen T, Morgan DB, Jensen C, Risberg MA, Engebretsen L, Viberg B (2020) Does surgery reduce knee osteoarthritis, meniscal injury and subsequent complications compared with non-surgery after ACL rupture with at least 10 years follow-up? A systematic review and meta-analysis. Br J Sports Med 54:592–598

    Article  PubMed  Google Scholar 

  20. Niederer D, Kalo K, Vogel J, Wilke J, Giesche F, Vogt L et al (2020) Quadriceps torque, peak variability and strength endurance in patients after anterior cruciate ligament reconstruction: impact of local muscle fatigue. J Mot Behav 52:22–32

    Article  PubMed  Google Scholar 

  21. Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95

    Article  CAS  PubMed  Google Scholar 

  22. Oiestad BE, Holm I, Gunderson R, Myklebust G, Risberg MA (2010) Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthritis Care Res (Hoboken) 62:1706–1714

    Article  Google Scholar 

  23. Palmieri-Smith RM, Thomas AC (2009) A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev 37:147–153

    Article  PubMed  Google Scholar 

  24. Pietrosimone B, Pfeiffer SJ, Harkey MS, Wallace K, Hunt C, Blackburn JT et al (2019) Quadriceps weakness associates with greater T1rho relaxation time in the medial femoral articular cartilage 6 months following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:2632–2642

    Article  PubMed  Google Scholar 

  25. Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB (2019) Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med 53:1454–1463

    Article  PubMed  Google Scholar 

  26. Primorac D, Molnar V, Rod E, Jelec Z, Cukelj F, Matisic V et al (2020) Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel) 11:854

    Article  CAS  Google Scholar 

  27. Pua YH, Bryant AL, Steele JR, Newton RU, Wrigley TV (2008) Isokinetic dynamometry in anterior cruciate ligament injury and reconstruction. Ann Acad Med Singap 37:330–340

    PubMed  Google Scholar 

  28. Rice DA, McNair PJ (2010) Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 40:250–266

    Article  PubMed  Google Scholar 

  29. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96

    Article  CAS  PubMed  Google Scholar 

  30. Safiri S, Kolahi AA, Smith E, Hill C, Bettampadi D, Mansournia MA et al (2020) Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 79:819–828

    Article  PubMed  Google Scholar 

  31. Sasaki K, Neptune RR (2010) Individual muscle contributions to the axial knee joint contact force during normal walking. J Biomech 43:2780–2784

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saxby DJ, Bryant AL, Van Ginckel A, Wang Y, Wang X, Modenese L et al (2019) Greater magnitude tibiofemoral contact forces are associated with reduced prevalence of osteochondral pathologies 2–3 years following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:707–715

    Article  PubMed  Google Scholar 

  33. Sonnery-Cottet B, Saithna A, Quelard B, Daggett M, Borade A, Ouanezar H et al (2019) Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med 53:289–298

    Article  PubMed  Google Scholar 

  34. Thomeer LT, Lin YC, Pandy MG (2020) Load distribution at the patellofemoral joint during walking. Ann Biomed Eng 48:2821–2835

    Article  PubMed  Google Scholar 

  35. Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD (2014) Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med 42:302–311

    Article  PubMed  Google Scholar 

  36. Voorhis C, Morgan B (2007) Understanding power and rules of thumb for determining sample size. Tutor Quant Methods Psychol 3:43–50

    Article  Google Scholar 

  37. Wang LJ, Zeng N, Yan ZP, Li JT, Ni GX (2020) Post-traumatic osteoarthritis following ACL injury. Arthritis Res Ther 22:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Bennell KL, Wang Y, Wrigley TV, Van Ginckel A, Fortin K et al (2019) Tibiofemoral joint structural change from 2.5 to 4.5 years following ACL reconstruction with and without combined meniscal pathology. BMC Musculoskelet Disord 20:312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang X, Wang Y, Bennell KL, Wrigley TV, Cicuttini FM, Fortin K et al (2017) Cartilage morphology at 2–3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology. Knee Surg Sports Traumatol Arthrosc 25:426–436

    Article  PubMed  Google Scholar 

  40. Wang Y, Teichtahl AJ, Abram F, Hussain SM, Pelletier JP, Cicuttini FM et al (2018) Knee pain as a predictor of structural progression over 4 years: data from the osteoarthritis initiative, a prospective cohort study. Arthritis Res Ther 20:250

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang Y, Wluka AE, Davis S, Cicuttini FM (2006) Factors affecting tibial plateau expansion in healthy women over 2.5 years: a longitudinal study. Osteoarthr Cartil 14:1258–1264

    Article  CAS  Google Scholar 

  42. Wang Y, Wluka AE, Jones G, Ding C, Cicuttini FM (2012) Use magnetic resonance imaging to assess articular cartilage. Ther Adv Musculoskelet Dis 4:77–97

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ward SH, Perraton L, Bennell K, Pietrosimone B, Bryant AL (2019) Deficits in quadriceps force control after anterior cruciate ligament injury: potential central mechanisms. J Athl Train 54:505–512

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wellsandt E, Gardinier ES, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L (2016) Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am J Sports Med 44:143–151

    Article  PubMed  Google Scholar 

  45. Young People With Old Knees Research T, Saxby DJ, Bryant AL, Wang X, Modenese L, Gerus P et al (2017) Relationships between tibiofemoral contact forces and cartilage morphology at 2 to 3 years after single-bundle hamstring anterior cruciate ligament reconstruction and in healthy knees. Orthop J Sports Med 5:2325967117722506

    Article  Google Scholar 

  46. Zbrojkiewicz D, Vertullo C, Grayson JE (2018) Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust 208:354–358

    Article  PubMed  Google Scholar 

  47. Zhang K, Li L, Yang L, Shi J, Zhu L, Liang H et al (2019) The biomechanical changes of load distribution with longitudinal tears of meniscal horns on knee joint: a finite element analysis. J Orthop Surg Res 14:237

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Karine Fortin for her contributions to the acquisition and analysis of data.

Funding

This work was supported by the National Health and Medical Research Council (NHMRC, project grant #628850). The funding source had no role in the: study design; collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in revising it critically for intellectual content. Study conception and design: AH, DJS, KLB, ALB. Acquisition of the data: KF, XW, ALB. Analysis and interpretation of data: AH, MH, KF, ALB. Draft of the paper: AH, MH, DJS, KLB, ALB. Obtaining of funding: ALB, KLB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anthony Hipsley.

Ethics declarations

Conflict of interests

The author(s) declare that they have no competing interests.

Ethics approval and consent to participate

All research studies have been performed according to the rules of the University of Melbourne Human Research Ethics Committee (0932864.3).

Informed consent

Informed written consent was obtained from participants for research studies and presented data.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hipsley, A., Hall, M., Saxby, D.J. et al. Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume. Knee Surg Sports Traumatol Arthrosc 30, 1949–1957 (2022). https://doi.org/10.1007/s00167-021-06853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06853-9

Keywords

Navigation