Skip to main content
Log in

Superb microvascular imaging (SMI) detects increased vascularity of the torn anterior cruciate ligament

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Ultrasound with superb microvascular imaging (SMI) is a novel microvascular imaging technology which may be useful to assess the vascularity of the torn anterior cruciate ligament (ACL) as a potential measure of healing potential following surgery. This study aimed to quantify the vascularity of the torn and intact ACL using ultrasound with SMI.

Methods

23 patients (mean age ± standard deviation, 27.1 ± 12.8 years), who were diagnosed with an ACL tear with an intact contralateral ACL were enrolled (ACL injury group). Ten healthy volunteers (36.1 ± 4.9 years) who had intact ACLs in both knees were also recruited (ACL healthy controls). The vascularity of the ACL was assessed using SMI within 15 mm from the tibial insertion in both knees. The amount of the vascular signal was assessed using a semi-quantitative grading scale (vascularity grade: grade 0–3) and a quantified ratio of vascularized area with respect to total area of the region of interest (vascularity ratio).

Results

In the ACL injury group, a significantly higher vascularity grade and ratio were observed in the torn ACL (vascularity grade 0–3: 1, 8, 7, and 7 patients, respectively; vascularity ratio: 1.3 ± 1.4%) than the contralateral intact ACL (vascularity grade 0–3: 21, 1, 1, and 0 patients, respectively; vascularity ratio: 0.1 ± 0.5%) (P < 0.001), whereas no significant difference was observed between both ACLs in the ACL healthy control group.

Conclusions

SMI was useful to assess the increased vascularity in torn ACL, which may reflect the potential for, or state of, ACL maturation following reconstruction or repair.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Dunlap J, McCarthy JA, Joyce ME, Ogata K, Shively RA (1989) Quantification of the perfusion of the anterior cruciate ligament and the effects of stress and injury to supporting structures. Am J Sports Med 17:808–810

    Article  CAS  Google Scholar 

  2. Scapinelli R (1997) Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat 10:151–162

    Article  CAS  Google Scholar 

  3. Toy BJ, Yeasting RA, Morse DE, McCann P (1995) Arterial supply to the human anterior cruciate ligament. J Athl Train 30:149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto T, Ingham SM, Mifune Y, Osawa A, Logar A, Usas A et al (2012) Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev 21:859–872

    Article  CAS  Google Scholar 

  5. Zhang S, Matsumoto T, Uefuji A, Matsushita T, Takayama K, Araki D et al (2015) Anterior cruciate ligament remnant tissue harvested within 3-months after injury predicts higher healing potential. BMC Musculoskelet Disord 16:390

    Article  Google Scholar 

  6. Takayama K, Kawakami Y, Mifune Y, Matsumoto T, Tang Y, Cummins JH et al (2015) The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation. Biomaterials 60:9–19

    Article  CAS  Google Scholar 

  7. Covey DC, Sandoval KE, Riffenburgh RH (2018) Contrast-enhanced MRI evaluation of bone-patellar tendon-bone and hamstring ACL autograft healing in humans: a prospective randomized study. Orthop J Sports Med 6:2325967118800298

    PubMed  PubMed Central  Google Scholar 

  8. Garika SS, Sharma A, Razik A, Sharma A, Pandey RM, Gamanagatti S et al (2019) Comparison of F18-fluorodeoxyglucose positron emission tomography/computed tomography and dynamic contrast-enhanced magnetic resonance imaging as markers of graft viability in anterior cruciate ligament reconstruction. Am J Sports Med 47:88–95

    Article  Google Scholar 

  9. Muramatsu K, Hachiya Y, Izawa H (2008) Serial evaluation of human anterior cruciate ligament grafts by contrast-enhanced magnetic resonance imaging: comparison of allografts and autografts. Arthroscopy 24:1038–1044

    Article  Google Scholar 

  10. Ntoulia A, Papadopoulou F, Ristanis S, Argyropoulou M, Georgoulis AD (2011) Revascularization process of the bone–patellar tendon–bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486

    Article  Google Scholar 

  11. Ntoulia A, Papadopoulou F, Zampeli F, Ristanis S, Argyropoulou M, Georgoulis A (2013) Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study. Skeletal Radiol 42:541–552

    Article  Google Scholar 

  12. Chiou HJ, Chou YH, Wu JJ, Hsu CC, Huang DY, Chang CY (2002) Evaluation of calcific tendonitis of the rotator cuff: role of color Doppler ultrasonography. J Ultrasound Med 21:289–295

    Article  Google Scholar 

  13. Oh MJ, Park KT, Youn KM, Joo JC, Park SJ (2018) Color Doppler sonography accompanied by dynamic scanning for the diagnosis of ankle and foot fractures. J Ultrasound Med 37:1555–1564

    Article  Google Scholar 

  14. Lee GY, Kim S, Choi ST, Song JS (2019) The superb microvascular imaging is more sensitive than conventional power Doppler imaging in detection of active synovitis in patients with rheumatoid arthritis. Clin Rheumatol 38:2613–2620

    Article  Google Scholar 

  15. Lim AKP, Satchithananda K, Dick EA, Abraham S, Cosgrove DO (2018) Microflow imaging: new Doppler technology to detect low-grade inflammation in patients with arthritis. Eur Radiol 28:1046–1053

    Article  CAS  Google Scholar 

  16. Orlandi D, Gitto S, Perugin Bernardi S, Corazza A, De Flaviis L, Silvestri E et al (2017) Advanced power Doppler technique increases synovial vascularity detection in patients with Rheumatoid Arthritis. Ultrasound Med Biol 43:1880–1887

    Article  Google Scholar 

  17. Chen J, Chen L, Wu L, Wang R, Liu JB, Hu B et al (2017) Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome: compared with color Doppler and power Doppler. Medicine (Baltimore) 96:e6862

    Article  Google Scholar 

  18. Karahan AY, Arslan S, Ordahan B, Bakdik S, Ekiz T (2018) Superb microvascular imaging of the median nerve in carpal tunnel syndrome: an electrodiagnostic and ultrasonographic study. J Ultrasound Med 37:2855–2861

    Article  Google Scholar 

  19. Arslan S, Karahan AY, Oncu F, Bakdik S, Durmaz MS, Tolu I (2018) Diagnostic performance of superb microvascular imaging and other sonographic modalities in the assessment of lateral epicondylosis. J Ultrasound Med 37:585–593

    Article  Google Scholar 

  20. Fujimaki Y, Thorhauer E, Sasaki Y, Smolinski P, Tashman S, Fu FH (2016) Quantitative in situ analysis of the anterior cruciate ligament: length, midsubstance cross-sectional area, and insertion site areas. Am J Sports Med 44:118–125

    Article  Google Scholar 

  21. Breukers M, Haase D, Konijnenberg S, Klos TVS, Dinant GJ, Ottenheijm RPG (2019) Diagnostic accuracy of dynamic ultrasound imaging in partial and complete anterior cruciate ligament tears: a retrospective study in 247 patients. BMJ Open Sport Exerc Med 5:e000605

    Article  Google Scholar 

  22. Lee SH, Yun SJ (2019) Efficiency of knee ultrasound for diagnosing anterior cruciate ligament and posterior cruciate ligament injuries: a systematic review and meta-analysis. Skeletal Radiol 48:1599–1610

    Article  Google Scholar 

  23. Lee SH, Yun SJ (2019) Feasibility of point-of-care knee ultrasonography for diagnosing anterior cruciate and posterior cruciate ligament tears in the ED. Am J Emerg Med. https://doi.org/10.1016/j.ajem.2019.04.040

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mautner K, Sussman WI, Nanos K, Blazuk J, Brigham C, Sarros E (2019) Validity of indirect ultrasound findings in acute anterior cruciate ligament ruptures. J Ultrasound Med 38:1685–1692

    Article  Google Scholar 

  25. Smith J, Hackel JG, Khan U, Pawlina W, Sellon JL (2015) Sonographically guided anterior cruciate ligament injection: technique and validation. PM & R 7:736–745

    Article  Google Scholar 

  26. You CK, Chou CL, Wu WT, Hsu YC (2019) Nonoperative choice of anterior cruciate ligament partial tear: ultrasound-guided platelet-rich plasma injection. J Med Ultrasound 27:148–150

    Article  Google Scholar 

  27. Gao J, Mennitt K, Belfi L, Zheng YY, Chen Z, Rubin JM (2013) Green tagging in displaying color Doppler aliasing: a comparison to standard color mapping in renal artery stenosis. Ultrasound Med Biol 39:1976–1982

    Article  Google Scholar 

  28. Gao J, Thai A, Erpelding T (2019) Comparison of superb microvascular imaging to conventional color Doppler ultrasonography in depicting renal cortical microvasculature. Clin Imaging 58:90–95

    Article  Google Scholar 

  29. Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41:1149–1160

    Article  Google Scholar 

  30. Hosseini A, Li JS, Gill TJT, Li G (2014) Meniscus injuries alter the kinematics of knees with anterior cruciate ligament deficiency. Orthop J Sports Med 2:2325967114547346

    PubMed  PubMed Central  Google Scholar 

  31. Mouton C, Magosch A, Pape D, Hoffmann A, Nührenbörger C, Seil R (2020) Ramp lesions of the medial meniscus are associated with a higher grade of dynamic rotatory laxity in ACL-injured patients in comparison to patients with an isolated injury. Knee Surg Sports Traumatol Arthrosc 28:1023–1028

    Article  Google Scholar 

  32. Samuelsen BT, Aman ZS, Kennedy MI, Dornan GJ, Storaci HW, Brady AW et al (2020) Posterior medial meniscus root tears potentiate the effect of increased tibial slope on anterior cruciate ligament graft forces. Am J Sports Med 48:334–340

    Article  Google Scholar 

  33. Gitto S, Messina C, Chianca V, Tuscano B, Lazzara A, Corazza A et al (2020) Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review. Radiol Med 125:481–490

    Article  Google Scholar 

  34. van der List JP, Mintz DN, DiFelice GS (2017) The location of anterior cruciate ligament tears: a prevalence study using magnetic resonance imaging. Orthop J Sports Med 5:2325967117709966

    PubMed  PubMed Central  Google Scholar 

  35. DiFelice GS, van der List JP (2018) Clinical outcomes of arthroscopic primary repair of proximal anterior cruciate ligament tears are maintained at mid-term follow-up. Arthroscopy 34:1085–1093

    Article  Google Scholar 

  36. Hoogeslag RAG, Brouwer RW, de Vries AJ, Boer BC, Huis In’t Veld R (2020) Efficacy of nonaugmented, static augmented, and dynamic augmented suture repair of the ruptured anterior cruciate ligament: a systematic review of the literature. Am J Sports Med. https://doi.org/10.1177/0363546520904690363546520904690

    Article  PubMed  Google Scholar 

  37. Houck DA, Kraeutler MJ, Belk JW, Goode JA, Mulcahey MK, Bravman JT (2019) Primary arthroscopic repair of the anterior cruciate ligament: a systematic review of clinical outcomes. Arthroscopy 35:3318–3327

    Article  Google Scholar 

  38. Hughes JD, Lawton CD, Nawabi DH, Pearle AD, Musahl V (2020) Anterior cruciate ligament repair: the current status. J Bone Joint Surg Am. https://doi.org/10.2106/jbjs.20.00509

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu.

Ethics declarations

Conflicts of interest

The author declare that they have no conflict of interest to disclose.

Ethical approval

The study was approved by the Institutional Review Board of our institution (STUDY19100043).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, S., Rothrauff, B.B., Kanto, R. et al. Superb microvascular imaging (SMI) detects increased vascularity of the torn anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 30, 93–101 (2022). https://doi.org/10.1007/s00167-021-06640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06640-6

Keywords

Navigation