Skip to main content
Log in

Load distribution in early osteoarthritis

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Total knee replacement is an accepted standard of care for the treatment of advanced knee osteoarthritis with good results in the vast majority of older patients. The use in younger and more active populations, however, remains controversial due to concerns over activity restrictions, implant survival, and patient satisfaction with the procedure. It is in these younger patient populations that alternatives to arthroplasty are increasingly being explored. Historically, osteotomy was utilized to address unicompartmental pain from degeneration and overload, for example, after meniscectomy. Utilization rates of osteotomy have fallen in recent years due to the increasing popularity of partial and total knee arthroplasty. This article explores the indications and outcomes of traditional unloading osteotomy, as well as newer options that are less invasive and offer faster return to function.

Level of evidence V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackerman IN, Osborne RH (2012) Obesity and increased burden of hip and knee joint disease in Australia: results from a national survey. BMC Musculoskelet Disord 13:254

    Article  PubMed  PubMed Central  Google Scholar 

  2. Amadi HO, Gupte CM, Lie DT, McDermott ID, Amis AA, Bull AM (2008) A biomechanical study of the meniscofemoral ligaments and their contribution to contact pressure reduction in the knee. Knee Surg Sports Traumatol Arthrosc 16:1004–1008

    Article  PubMed  Google Scholar 

  3. Bonasia DE, Dettoni F, Sito G, Blonna D, Marmotti A, Bruzzone M, Castoldi F, Rossi R (2014) Medial opening wedge high tibial osteotomy for medial compartment overload/arthritis in the varus knee: prognostic factors. Am J Sports Med 42:690–698

    Article  PubMed  Google Scholar 

  4. Brouwer RW, Huizinga MR, Duivenvoorden T, van Raaij TM, Verhagen AP, Bierma-Zeinstra SM, Verhaar JA (2014) Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev 12:CD004019

    PubMed  Google Scholar 

  5. Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35:622–638

    Article  CAS  PubMed  Google Scholar 

  6. Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthr Cartil 14:1087–1090

    Article  CAS  PubMed  Google Scholar 

  7. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41

    Article  CAS  PubMed  Google Scholar 

  8. Coventry MB (1965) Osteotomy of the upper portion of the Tibia for degenerative arthritis of the knee. A preliminary report. J Bone Joint Surg Am 47:984–990

    CAS  PubMed  Google Scholar 

  9. Coventry MB (1984) Upper tibial osteotomy. Clin Orthop Relat Res 182:46–52

    PubMed  Google Scholar 

  10. Coventry MB, Ilstrup DM, Wallrichs SL (1993) Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Joint Surg Am 75:196–201

    CAS  PubMed  Google Scholar 

  11. Danino B, Shabshin N, Schweitzer M, Halperin N (2005) Assessment of knee osteoarthritis on MR imaging under vertical weight-bearing conditions. J Bone Joint Surg Br 87:388

    Google Scholar 

  12. Duivenvoorden T, Brouwer RW, Baan A, Bos PK, Reijman M, Bierma-Zeinstra SM, Verhaar JA (2014) Comparison of closing-wedge and opening-wedge high tibial osteotomy for medial compartment osteoarthritis of the knee: a randomized controlled trial with a six-year follow-up. J Bone Joint Surg Am 96:1425–1432

    Article  CAS  PubMed  Google Scholar 

  13. Duivenvoorden T, van Diggele P, Reijman M, Bos PK, van Egmond J, Bierma-Zeinstra SM, Verhaar JA (2015) Adverse events and survival after closing- and opening-wedge high tibial osteotomy: a comparative study of 412 patients. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3644-2

    PubMed  Google Scholar 

  14. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P (2011) Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc 19:147–157

    Article  PubMed  Google Scholar 

  15. Faschingbauer M, Nelitz M, Urlaub S, Reichel H, Dornacher D (2015) Return to work and sporting activities after high tibial osteotomy. Int Orthop 39:1527–1534

    Article  PubMed  Google Scholar 

  16. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF (1988) Obesity and knee osteoarthritis. The Framingham Study. Ann Intern Med 109:18–24

    Article  CAS  PubMed  Google Scholar 

  17. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P (2013) Outcome after high tibial open-wedge osteotomy: a retrospective evaluation of 533 patients. Knee Surg Sports Traumatol Arthrosc 21:170–180

    Article  PubMed  Google Scholar 

  18. Floerkemeier S, Staubli AE, Schroeter S, Goldhahn S, Lobenhoffer P (2014) Does obesity and nicotine abuse influence the outcome and complication rate after open-wedge high tibial osteotomy? A retrospective evaluation of five hundred and thirty three patients. Int Orthop 38:55–60

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grunder W, Kanowski M, Wagner M, Werner A (2000) Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy. Magn Reson Med 43:884–891

    Article  CAS  PubMed  Google Scholar 

  20. Hamada H, Nishii T, Tamura S, Tanaka H, Wakayama T, Sugano N (2015) Comparison of load responsiveness of cartilage T1rho and T2 in porcine knee joints: an experimental loading MRI study. Osteoarthr Cartil 23:1776–1779

    Article  CAS  PubMed  Google Scholar 

  21. Harris JD, McNeilan R, Siston RA, Flanigan DC (2013) Survival and clinical outcome of isolated high tibial osteotomy and combined biological knee reconstruction. Knee 20:154–161

    Article  PubMed  Google Scholar 

  22. Hinterwimmer S, Krammer M, Krotz M, Glaser C, Baumgart R, Reiser M, Eckstein F (2004) Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum 50:2516–2520

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann S, Lobenhoffer P, Staubli A, Van Heerwaarden R (2009) Osteotomies of the knee joint in patients with monocompartmental arthritis. Orthopade 38:755–769; quiz 770

  24. Hsu RW, Himeno S, Coventry MB, Chao EY (1990) Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res 255:215–227

    PubMed  Google Scholar 

  25. Intema F, Thomas TP, Anderson DD, Elkins JM, Brown TD, Amendola A, Lafeber FP, Saltzman CL (2011) Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis. Osteoarthr Cartil 19:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanamiya T, Naito M, Hara M, Yoshimura I (2002) The influences of biomechanical factors on cartilage regeneration after high tibial osteotomy for knees with medial compartment osteoarthritis: clinical and arthroscopic observations. Arthroscopy 18:725–729

    Article  PubMed  Google Scholar 

  27. Koshino T, Wada S, Ara Y, Saito T (2003) Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee 10:229–236

    Article  PubMed  Google Scholar 

  28. Li Y, Zhang H, Zhang J, Li X, Song G, Feng H (2015) Clinical outcome of simultaneous high tibial osteotomy and anterior cruciate ligament reconstruction for medial compartment osteoarthritis in young patients with anterior cruciate ligament-deficient knees: a systematic review. Arthroscopy 31:507–519

    Article  CAS  PubMed  Google Scholar 

  29. Linder-Ganz E, Elsner JJ, Danino A, Guilak F, Shterling A (2010) A novel quantitative approach for evaluating contact mechanics of meniscal replacements. J Biomech Eng 132:024501

    Article  CAS  PubMed  Google Scholar 

  30. Lobenhoffer P (2014) Importance of osteotomy around to the knee for medial gonarthritis. Indications, technique and results. Orthopade 43:425–431

    Article  CAS  PubMed  Google Scholar 

  31. Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11:132–138

    PubMed  Google Scholar 

  32. Lobenhoffer P, Agneskirchner JD (2014) Osteotomy around the knee vs. unicondylar knee replacement. Orthopade 43:923–929

    Article  CAS  PubMed  Google Scholar 

  33. Madry H, Ziegler R, Orth P, Goebel L, Ong MF, Kohn D, Cucchiarini M, Pape D (2013) Effect of open wedge high tibial osteotomy on the lateral compartment in sheep. Part I: analysis of the lateral meniscus. Knee Surg Sports Traumatol Arthrosc 21:39–48

    Article  PubMed  Google Scholar 

  34. Majima T, Yasuda K, Aoki Y, Minami A (2008) Impact of patellofemoral osteoarthritis on long-term outcome of high tibial osteotomy and effects of ventralization of tibial tubercle. J Orthop Sci 13:192–197

    Article  PubMed  Google Scholar 

  35. Mastrokalos DS, Papagelopoulos PJ, Mavrogenis AF, Hantes ME, Paessler HH (2008) Changes of the posterior meniscal horn height during loading: an in vivo magnetic resonance imaging study. Orthopedics 31:68

    Article  PubMed  Google Scholar 

  36. McDermott ID, Lie DT, Edwards A, Bull AM, Amis AA (2008) The effects of lateral meniscal allograft transplantation techniques on tibio-femoral contact pressures. Knee Surg Sports Traumatol Arthrosc 16:553–560

    Article  PubMed  Google Scholar 

  37. Miller LE, Sode M, Fuerst T, Block JE (2015) Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis. Clin Interv Aging 10:351–357

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  39. Mucha A, Dordevic M, Hirschmann A, Rasch H, Amsler F, Arnold MP, Hirschmann MT (2015) Effect of high tibial osteotomy on joint loading in symptomatic patients with varus aligned knees: a study using SPECT/CT. Knee Surg Sports Traumatol Arthrosc 23:2315–2323

    Article  PubMed  Google Scholar 

  40. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    Article  CAS  PubMed  Google Scholar 

  41. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H (2008) Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging 28:175–180

    Article  PubMed  Google Scholar 

  42. Odenbring S, Egund N, Lindstrand A, Lohmander LS, Willen H (1992) Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study. Clin Orthop Relat Res 277:210–216

    PubMed  Google Scholar 

  43. Owman H, Tiderius CJ, Ericsson YB, Dahlberg LE (2014) Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Osteoarthr Cartil 22:928–932

    Article  CAS  PubMed  Google Scholar 

  44. Rossi R, Bonasia DE, Amendola A (2011) The role of high tibial osteotomy in the varus knee. J Am Acad Orthop Surg 19:590–599

    Article  PubMed  Google Scholar 

  45. Schoenbauer E, Szomolanyi P, Shiomi T, Juras V, Zbyn S, Zak L, Weber M, Trattnig S (2015) Cartilage evaluation with biochemical MR imaging using in vivo Knee compression at 3T-comparison of patients after cartilage repair with healthy volunteers. J Biomech 48:3349–3355

    Article  PubMed  Google Scholar 

  46. Schuster P, Schulz M, Mayer P, Schlumberger M, Immendoerfer M, Richter J (2015) Open-wedge high tibial osteotomy and combined abrasion/microfracture in severe medial osteoarthritis and varus malalignment: 5-year results and arthroscopic findings after 2 years. Arthroscopy 31:1279–1288

    Article  PubMed  Google Scholar 

  47. Shiomi T, Nishii T, Tanaka H, Yamazaki Y, Murase K, Myoui A, Yoshikawa H, Sugano N (2010) Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints. Osteoarthr Cartil 18:902–908

    Article  CAS  PubMed  Google Scholar 

  48. Sitoci KH, Hudelmaier M, Eckstein F (2012) Nocturnal changes in knee cartilage thickness in young healthy adults. Cells Tissues Organs 196:189–194

    Article  CAS  PubMed  Google Scholar 

  49. Smith JO, Wilson AJ, Thomas NP (2013) Osteotomy around the knee: evolution, principles and results. Knee Surg Sports Traumatol Arthrosc 21:3–22

    Article  CAS  PubMed  Google Scholar 

  50. Souza RB, Kumar D, Calixto N, Singh J, Schooler J, Subburaj K, Li X, Link TM, Majumdar S (2014) Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr Cartil 22:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Souza RB, Stehling C, Wyman BT, Hellio Le Graverand MP, Li X, Link TM, Majumdar S (2010) The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthr Cartil 18:1557–1563

    Article  CAS  PubMed  Google Scholar 

  52. Stehling C, Souza RB, Hellio Le Graverand MP, Wyman BT, Li X, Majumdar S, Link TM (2012) Loading of the knee during 3.0T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis. Eur J Radiol 81:1839–1845

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sterett WI, Steadman JR (2004) Chondral resurfacing and high tibial osteotomy in the varus knee. Am J Sports Med 32:1243–1249

    Article  PubMed  Google Scholar 

  54. Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM (2009) Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 61:459–467

    Article  PubMed  Google Scholar 

  55. Tibesku CO, Mastrokalos DS, Jagodzinski M, Passler HH (2004) MRI evaluation of meniscal movement and deformation in vivo under load bearing condition. Sportverletz Sportschaden 18:68–75

    Article  CAS  PubMed  Google Scholar 

  56. Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492

    Article  PubMed  Google Scholar 

  57. Tsukada S, Wakui M (2015) Is overcorrection preferable for repair of degenerated articular cartilage after open-wedge high tibial osteotomy? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3655-z

    Google Scholar 

  58. Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement. An in vivo study using dynamic MRI. J Bone Joint Surg Br 81:37–41

    Article  CAS  PubMed  Google Scholar 

  59. White LM, Sussman MS, Hurtig M, Probyn L, Tomlinson G, Kandel R (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241:407–414

    Article  PubMed  Google Scholar 

  60. Wiegant K, van Roermund PM, Intema F, Cotofana S, Eckstein F, Mastbergen SC, Lafeber FP (2013) Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthr Cartil 21:1660–1667

    Article  CAS  PubMed  Google Scholar 

  61. Ziegler R, Goebel L, Cucchiarini M, Pape D, Madry H (2014) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part II: standard and overcorrection do not cause articular cartilage degeneration. Knee Surg Sports Traumatol Arthrosc 22:1666–1677

    Article  PubMed  Google Scholar 

  62. Ziegler R, Goebel L, Seidel R, Cucchiarini M, Pape D, Madry H (2015) Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus. Knee Surg Sports Traumatol Arthrosc 23:2704–2714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Gomoll.

Ethics declarations

Disclosure

Andreas H. Gomoll: Royalties (SBM Inc.); Henning Madry: None; Peter Angele: Aesculap, Arthrex, Orteq, Shabshin and Condello: NuSurface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomoll, A.H., Angele, P., Condello, V. et al. Load distribution in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24, 1815–1825 (2016). https://doi.org/10.1007/s00167-016-4123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4123-0

Keywords

Navigation